

## 7/8/13/15/18/23/26/38 ГГц 2x2 ~ 16x2 МВ ЦИФРОВАЯ РАДИОСИСТЕМА (1+0/1+1 СИСТЕМА)

Этот документ описывает текущую версию стандартного оборудования NEC. Если возникает какое-либо разногласие между этим документом и системным описанием и/или актом соответствия, последний заменит этот документ. Спецификация или конфигурация, содержащиеся в этом документе, подвергаются изменению без уведомления из-за продолжения компанией NEC улучшения проектов.

**NEC Corporation** 

## СОДЕРЖАНИЕ

| СОГ | ΙΕΡЖ   | <b>КАНИЕ</b>                                                  | 2  |
|-----|--------|---------------------------------------------------------------|----|
| СПИ | СОК    | СОКРАЩЕНИЙ                                                    | 4  |
| 1.  | ВВ     | ЕДЕНИЕ                                                        | 6  |
| 2.  |        | РАКТЕРИСТИКИ                                                  |    |
|     |        |                                                               |    |
| 3.  |        | ДЕЖНОСТЬ И КАЧЕСТВО                                           |    |
| 4.  | ИН     | ТЕРФЕЙС                                                       | 25 |
| 5.  | PA     | ССМОТРЕНИЕ КОНСТРУКЦИИ                                        | 27 |
| 6.  | СИ     | СТЕМА УПРАВЛЕНИЯ СЕТЬЮ (ОПЦИЯ)                                | 33 |
| 6.1 | ВВ     | ЕДЕНИЕ                                                        | 33 |
| 6.2 | Св     | ойства                                                        | 34 |
| 6.2 | 2.1    | Стандартная платформа                                         | 34 |
| 6.  | 2.2    | Удобная работа пользователя                                   | 34 |
| 6.  | 2.3    | Система контроля и управления, ориентированная на линию связи | 35 |
| 6.  | 2.4    | Удаленный доступ и управление                                 | 35 |
| 6.  | 2.5    | Регистрация событий                                           | 35 |
| 6.  | 2.6    | Управление сигналами аварий (только PNMS)                     | 35 |
| 6.  | 2.7    | Контроль характеристик ITU-T G826                             | 36 |
| 6.  | 2.8    | Безопасность                                                  | 36 |
| 6.  | 2.9    | Интерфейс SNMP (только PNMS, опция)                           | 36 |
| 7.  | XA     | РАКТЕРИСТИКИ                                                  | 37 |
| 7.1 | Об     | щее                                                           | 37 |
| 7.2 | 1+(    | О ODU (блок внешней установки)                                | 39 |
| 7.3 | Me     | жблочные соединения (между ODU и IDU)                         | 41 |
| 7.4 |        | J (блок внутренней установки)                                 |    |
| 7.5 | Γиθ    | бридный делитель/сумматор                                     | 46 |
| 7.  | 5.1 Te | ехнические характеристики                                     | 46 |
| 7.  | 5.2 Фі | изические размеры                                             | 47 |
| 7.  |        | /ководство по установке                                       |    |
| 7.6 | Ор     | томод (OMT, Ortho-Mode Transducer)                            | 49 |
| 7.0 | 6.1 C  | зойства                                                       | 49 |
| 7.  | 6.2 Te | ехнические характеристики                                     | 50 |
|     |        | изические размеры                                             |    |
| 7.7 |        | генюатор 38 ГГц передатчика                                   |    |
| 7.  | 7.1 C  | войства                                                       |    |
| 7   | 72 Te  | SYHUNECKUE XADAKTEDUCTUKU                                     | 52 |



| 7.7 | .3 Физические размеры                                 | 52 |
|-----|-------------------------------------------------------|----|
| 7.8 | MEHЮ PASOLINK ANTENNA для непосредственного монтажа и |    |
|     | характеристики                                        | 53 |
| 8.  | ПРИМЕНЕНИЯ                                            | 55 |
| 8.1 | Сервисные применения                                  | 55 |
|     | Специальные применения                                |    |



## СПИСОК СОКРАЩЕНИЙ

| APC               | Автоматическая подстройка фазы                                    | F/B   | Коэффициент обратного излучения                     |
|-------------------|-------------------------------------------------------------------|-------|-----------------------------------------------------|
| ALM               | Сигнал аварии                                                     | FREQ  | Частота                                             |
| AMP               | Усилитель                                                         | HYB   | Делитель/сумматор                                   |
| ASC               | Аналоговый служебный канал                                        | IEC   | Международная электротехническая комиссия, МЭК      |
| ATPC              | Автоматическое управление мощностью передатчика                   | I/O   | Вход/Выход                                          |
| ATT               | Аттенюатор                                                        | IDU   | Блок внутренней установки                           |
| B/U               | Биполярный в униполярный                                          | IF    | Промежуточная частота                               |
| Back-<br>Pressure | Антиперегрузочное<br>управление                                   | INTFC | Интерфейс                                           |
| BBE               | Фоновая блочная ошибка                                            | ITU   | Международный союз<br>телекоммуникаций              |
| BBER              | Коэффициент ошибок по фоновым<br>блокам                           | ITU-R | Radio Communication Sector of ITU                   |
| BER               | Коэффициент ошибок по битам                                       | ITU-T | Сектор радиосвязи ITU                               |
| BNC               | Миниатюрный байонетный<br>соединитель для коаксиального<br>кабеля | LAN   | Локальная вычислительная сеть                       |
| BR                | Ветвление                                                         | LED   | Светоизлучающий диод                                |
| COMP              | Компаратор                                                        | LNA   | Малошумящий усилитель                               |
| CONT              | Управление                                                        | MAINT | Техническое обслуживание                            |
| CONV              | Преобразователь                                                   | MIX   | Смеситель                                           |
| D/A               | Цифро-аналоговый                                                  | MMIC  | Монолитная интегральная схема СВЧ                   |
| DEM               | Демодулятор                                                       | MOD   | Модулятор                                           |
| DEMUX             | Демультиплексор                                                   | MPU   | Микропроцессорный блок                              |
| DET               | Детектор                                                          | MPX   | Мультиплексор                                       |
| DIG               | Цифровой                                                          | MTBF  | Среднее время между отказами                        |
| DPU               | Блок цифрового процессора                                         | MUX   | Мультиплексор                                       |
| DSC               | Цифровой канал управления                                         | NMS   | Система управления сетью                            |
| ES                | Секунды с ошибками                                                | ODU   | Блок наружной установки                             |
| ESR               | Коэффициент ошибок по секундам                                    | OPR   | Работа                                              |
| ETHERNET          | Локальная сеть в соответствии со стандартом IEEE802.3             | OW    | Канал служебной связи                               |
| ETSI              | Европейский институт<br>телекоммуникационных стандартов           | PABX  | Учрежденческая АТС с исходящей и<br>входящей связью |
| EMC               | Электромагнитная совместимость                                    | PBX   | Частная телефонная станция                          |
| EQL               | Эквалайзер                                                        | PC    | Персональный компьютер                              |



| PCM     | Импульсно-кодовая модуляция          | SES  | Секунда с критическим числом ошибок                 |
|---------|--------------------------------------|------|-----------------------------------------------------|
| PM CARD | Плата управления PASOLINK            |      | <del></del>                                         |
| PNMS    | Система управления сетью<br>PASOLINK | SESR | Коэффициент по Секундам с критическим числом ошибок |
| PNMT    | Терминал управления сетью            | SMA  | Субминиатюрный типа А                               |
| PINIVII | PASOLINK                             | SNMP | Простой протокол сетевого<br>управления             |
| ppm     | миллионная часть                     |      | •                                                   |
| PS      | Блок питания                         | SV   | Контролирующий                                      |
| PSK     | Фазовая манипуляция, ФМн             | SYNC | Синхронизация                                       |
| PWR     | Мощность                             | TX   | Передатчик                                          |
| ODCK    | ·                                    | U/B  | Униполярный в пиполярный                            |
| QPSK    | Квадратурная фазовая<br>манипуляция  | UAS  | Недоступные секунды                                 |
| RF      | Радиочастота                         | VF   | Частота речевого диапазона                          |
| RX      | Приемник                             | VSWR | Коэффииент стоячей волны по                         |
| SC      | Служебный канал                      |      | напряжению КСВН                                     |
| SD      | •                                    | WS   | Дополнительный канал                                |
| טט      | Пространственное разнесение          | XPD  | Коэффициент подавления                              |
| SEL     | Селектор                             | AI D | кроссполяризации                                    |



## 1. ВВЕДЕНИЕ

Для обеспечения надежных цифровых линий связи местного доступа и полного использования потенциала сквозных современных сетей NEC разработал систему PASOLINK - цифровую радиорелейную систему с узкой полосой, работающую в частотных диапазонах 7/8/13/15/18/23/26/38 ГГц.

Эта система удовлетворяет возросшему спросу на цифровые услуги передачи и потребностям в данных и передаче общих транспортных линий связи, частных линий связи, городских, сельских, временных или аварийных сетей связи.

Система PASOLINK обеспечивает возможность передачи двух, четырех, восьми или шестнадцати сигналов 2 Мбит/с или двух сигналов 10/100 Base-TX плюс дополнительных сервисных каналов.

Оборудование PASOLINK предлагает очень высокое качество исполнения, легко устанавливается, имеет большую системную гибкость и испытаниями доказана его высокая надежность.

Это техническое описание охватывает 7/8/13/15/18/23/26/38 ГГц, 2x2/4x2/8x2/16x2 Мбит/с, 10 Base-T/100 Base-TX, 1+0/1+1 системы. В случае 1+1 системы, горячее резервирование системы / горячее резервирование с пространственным разнесением системы / сдвоенные (twin pass) системы являются выборочными опциями.



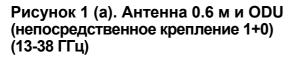





Рисунок 1(b). Антенна 0.3 м и ODU (непосредственное крепление 1+0) (13-38 ГГц) 1(b).





Рисунок 2. IDU(1+0,1U)



Рисунок 3. МОНИТОР PASOLINK (ОПЦИЯ)

#### 2. ХАРАКТЕРИСТИКИ

#### 1. Передовые технологии и превосходное исполнение

- Монолитные ИМС, ГИС и СБИС
- Модулятор-демодулятор на одной микросхеме (полностью цифровой)
- Формирование сглаживающего спектра по Найквисту пропорционально корню квадратному
- Высокая надежность
- Малое электропотребление
- Возможность основного трафика 10 Base-T/100 Base-TX (опция)
- Возможность автоматического управления мощностью передатчика (ATPC)

#### 2. Высокий коэффициент усиления системы

- Достигается применением технологии QPSK и высококачественным блоком МШУ-смеситель LNA-MIX (лучшая чувствительность приемника).
- Позволяет использовать меньшие по размеру антенны и уменьшает стоимость системы.

## 3. Легкая и быстрая установка

- Межблочные соединения: всего один коаксиальный кабель и автоматическая компенсация
- Очень компактный и легкий
- Различные методы установки для IDU, ODU и антенны
- Простая настройка направления антенны с использованием PASOLINK MONITOR (Опция)

#### 4. Быстрая перестройка и легкая настройка частоты

- Настраиваемый в полевых условиях местный генератор (синтезатор)
- Изменение радиочастоты без использования измерительной аппаратуры или сменных модулей

#### 5. Управление мощностью передатчика

• Изменяемое : от 0 до 30 dB с шагом 1 дБ

• Фиксированное : фиксированный аттенюатор на передачу 30 дБ (опция).

#### 6. Гибкость системны

- Нерезервированная (1+0) или резервированная (1+1)
- Возможны системы 1+1 с горячим резервированием/ пространственным разнесением/ двухканальная
- IDU одинаковый для 7/8/13/15/18/23/26/38 ГГц
- Программно-устанавливаемая скорость передачи IDU (для типа с произвольной скоростью передачи 2/4/8/16x2 Мбит/с)



- Общий ODU для 16x2 / 8x2 / 4x2 / 2x2 Мбит/с /10 Base-T /100 Base-TX
- Широкий диапазон входного напряжения ±(20...60) В постоянного тока

#### 7. Средства технического обслуживания

- Полный доступ к IDU с передней панели для всех кабельных соединений и пользовательского интерфейса
- Предварительная установка аварийного значения BER: 10<sup>-3</sup>, 10<sup>-4</sup>, 10<sup>-5</sup> или 10<sup>-6</sup> (точка введения внешнего аварийного сигнала/AIS)
- Проверка по шлейфу на «ближнем конце» проверка по шлейфу на «дальнем конце»
- Удаленный контроль рабочего состояния ODU на IDU
- Средства телефонной связи между IDU
- Функция местного и удаленного наблюдения на IDU

## 8. Служебные каналы (смотри Таблицу 1)

• Служебной канал (OW): (Смотри Рис.4)

IDU - IDU (стандарт)

IDU - ODU (При использовании "PASOLINK MONITOR" (Опция))

ODU-ODU (При использовании "PASOLINK MONITOR" (Опция))

• Цифровой порт:

1 канал 9.6 кбит/с (RS-232C)(Стандарт)

1 канал 9.6 кбит/с (RS-232C/RS-422/RS-485; выбирается)(Стандарт)

2 канала 9.6 кбит/с (RS-232C или RS-422)(При использовании DSC INTFC (Опция))

1 канал 64 кбит/с (G.703 или V11) (При использовании 64К INTFC (Опция), при том, что не используется 1 канал 9.6 кбит/с (RS-232C) (Стандарт) порт)

• Речевой порт:

2 канала 0.3...3.4 кГц (При использовании ASC INTFC, при том, что не используются 2 канала 9.6 кбит/с (RS-232C или RS-422) порты)

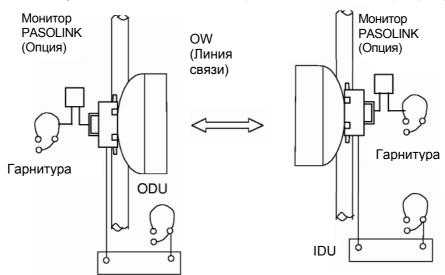



Рисунок 4. Служебный канал

## 9. Электромагнитная совместимость (ЭМС)

Соответствует ETS 300385

#### 10. СИСТЕМА УПРАВЛЕНИЯ СЕТЬЮ PASOLINK (PNMS) (ОПЦИЯ)

- Удобство работы для пользователя
- Используются системы Windows 2000/ХР™ для обеспечения легкой работы и удобства обслуживания
- Удаленный доступ и управление любым терминалом PASOLINK в сети
- Специализированные (обе стороны радиорелейной линии) контроль и управление связью
- Учет деятельности
- Отображение исполнения ITU-T G.826 (таблично/графическое представление)
- Многоуровневая система безопасности
- Интерфейс SNMP (Опция)

#### 11. ТЕРМИНАЛ УПРАВЛЕНИЯ СЕТЬЮ PASOLINK (PNMT) (ОПЦИЯ)

- Удобство работы в качестве терминала обслуживания
- Используются системы Windows 2000/XP™, позволяющие использовать мобильные ПК
- Обеспечивает специализированные контроль и управление связью для локального и удаленного доступа к терминалу PASOLINK

#### 12. Совместимость со стандартами ITU-R, ITU-T и ETSI

#### 13. Гибкая конфигурация установки ODU

Подходящая конфигурация может быть выбрана из различных типов установки ODU.

- Непосредственное крепление на антенну
- Удаленное крепление с волноводом или коаксиальным кабелем
- Система 1+1 с гибридным сумматором/делителем
- Система 2+0 с двухполяризационной антенной

#### 13.1 Система 1+0

| Конфигурация                               | Ссылочные чертежи и рисунки     |
|--------------------------------------------|---------------------------------|
| 13-38 ГГц<br>непосредственное<br>крепление | Рисунок 1 (a) или Рисунок 1 (b) |
| 13-38 ГГц<br>удаленное крепление           | Рисунок 5(а)                    |
| 7-8 ГГц<br>удаленное крепление             | Рисунок 5(b)                    |



#### 13.2 Система 1+1

| Конфигурация                               | Ссылочные чертежи и рисунки           |                                                   |  |  |
|--------------------------------------------|---------------------------------------|---------------------------------------------------|--|--|
|                                            | Гибридный сумматор или<br>ответвитель | Две антенны<br>(для пространственного разнесения) |  |  |
| 13-38 ГГц<br>непосредственное<br>крепление | Рисунок 5(с)                          | Рисунок 5(d)                                      |  |  |
| 13-38 ГГц<br>удаленное крепление           | Рисунок 5(е)                          | Рисунок 5(f)                                      |  |  |
| 7-8 ГГц<br>удаленное крепление             | Рисунок 5(g)<br>Рисунок 5(h)          | Рисунок 5(і)                                      |  |  |

## **13.3 Система 2+0** (Двухполяризационная антенная система для назначения смежного или совмещенного канала)

| Конфигурация                               | Справочные чертежи и рисунки      |                             |  |  |
|--------------------------------------------|-----------------------------------|-----------------------------|--|--|
|                                            | Непосредственное крепление<br>ОМТ | Двухполяризационная антенна |  |  |
| 13-38 ГГц<br>непосредственное<br>крепление | Рисунок 5(ј)                      | -                           |  |  |
| 13-38 ГГц<br>удаленное крепление           | -                                 | Рисунок 5(k)                |  |  |
| 7-8 ГГц<br>удаленное крепление             | -                                 | Рисунок 5(I)                |  |  |

## 14. Простой выбор в меню Indoor

Для IDU простой выбор предусмотрен посредством следующих 3 пунктов.

- 1) Только 4х2 Мбит/с или нет
- 2) Без резервирования или с резервированием (1+0 или 1+1)
- 3) Используются интерфейсы Ethernet или нет. (Пожалуйста, обратитесь к рисункам 6(а)...(h), отображающим вид спереди IDU)



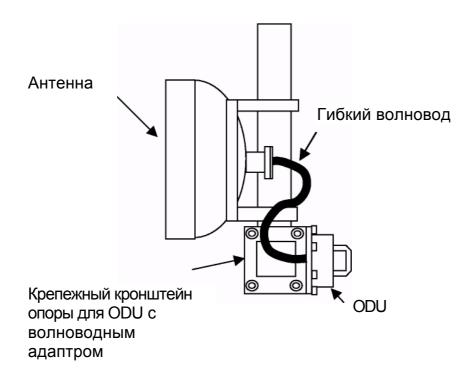



Рисунок 5(a). Удаленное крепление 1+0 ODU PASOLINK 13-38 ГГц

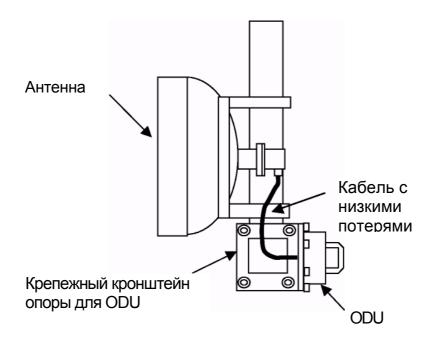



Рисунок 5(b). Выносное крепление 1+0 ODU PASOLINK 7/8 ГГц (Как опцию, ODU 7/8 ГГц имеет волноводный интерфейс)



Рисунок 5(c). Крепление 1+1 ODU PASOLINK 13-38 ГГц (одна антенна с блоком гибридного сумматора)

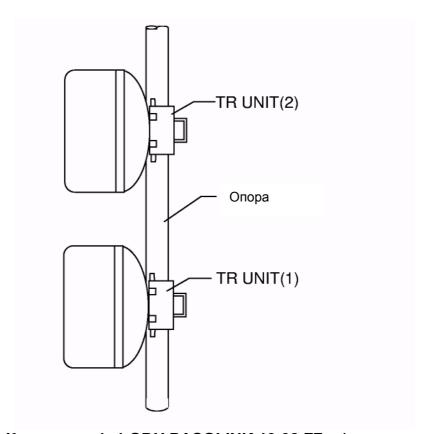



Рисунок 5(d). Крепление 1+1 ODU PASOLINK 13-38 ГГц (две антенны)

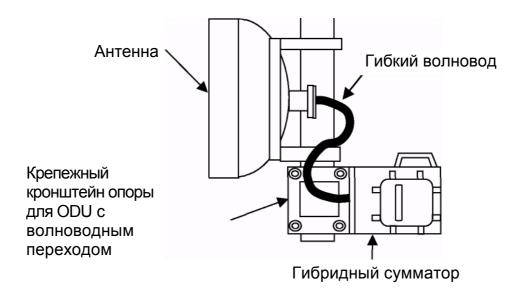



Рисунок 5(e). Удаленное крепление 1+0 ODU PASOLINK 13-38 ГГц

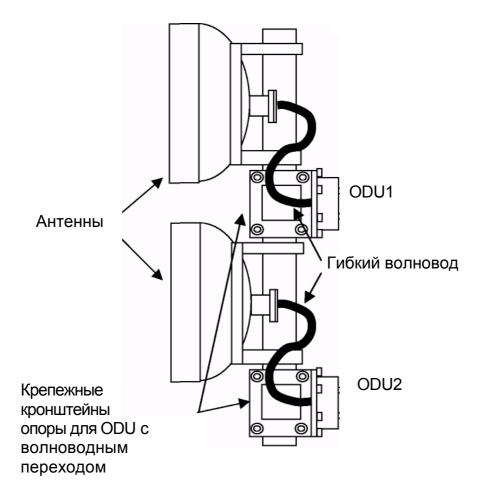



Рисунок 5(f). Удаленное крепление 1+1 ODU PASOLINK 13-38 ГГц с двумя антеннами

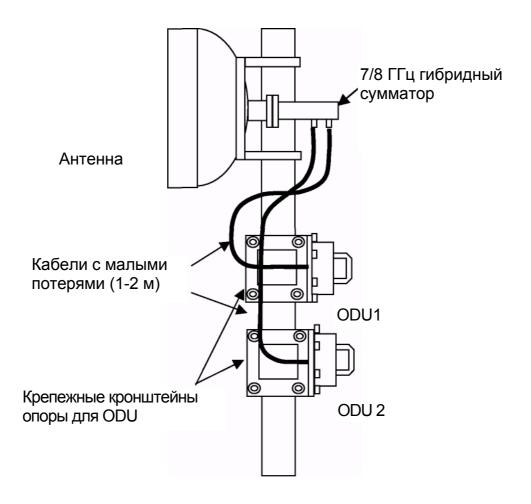



Рисунок 5(g). Крепление 1+1 ODU PASOLINK 7/8 ГГц с гибридным сумматором и одной антенной



Разъем N - типа

Рисунок 5(h). Гибридный сумматор 7/8 ГГц системы PASOLINK 1+1

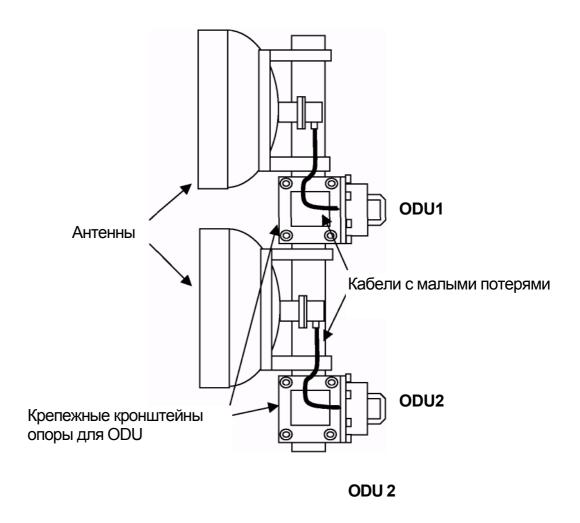



Рисунок 5(i). Крепление 1+1 ODU PASOLINK 7/8 ГГц с двумя антеннами

# Антенна с кругловолноводным интерфейсом

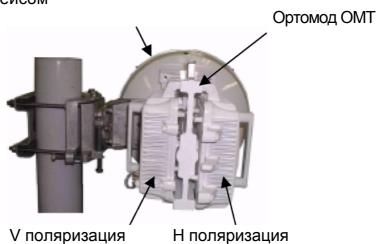



Рисунок 5(j). Непосредственное крепление 13-38 ГГц двухполяризационной системы

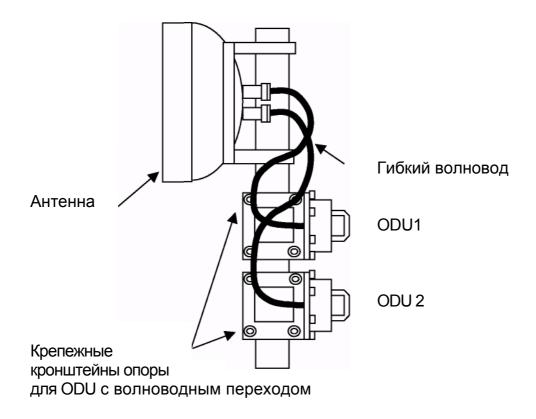



Рисунок 5(k). Удаленное крепление 13-38 ГГц двухполяризационной системы

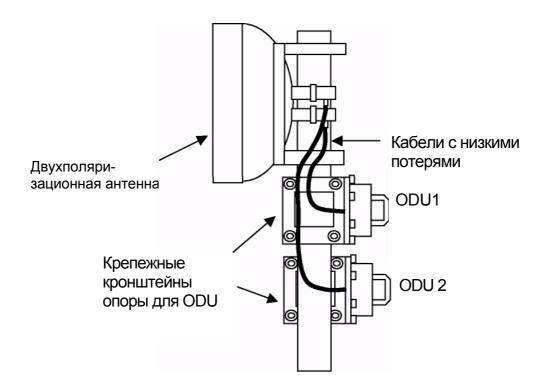



Рисунок 5(I). Удаленное крепление 7/8 ГГц двухполяризационной системы

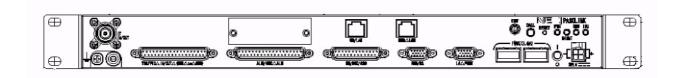



Рисунок 6(a). Вид спереди на 1+0 IDU 1U 4x2 Мбит/с с фиксированной скоростью передачи



Рисунок 6(b). Вид спереди на 1+0 IDU 1U с интерфейсом LAN 4 x 2 Мбит/с с фиксированной скоростью передачи

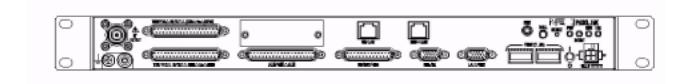



Рисунок 6(c). Вид спереди на 1+0 IDU 1U N x 2 Мбит/с с произвольной скоростью передачи (N=2/4/8/16)

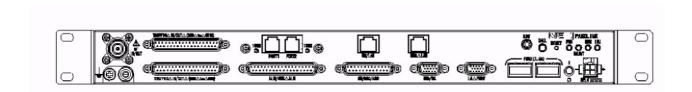



Рисунок 6(d). Вид спереди на 1+0 IDU 1U с интерфейсом LAN N x 2 Мбит/с с произвольной скоростью передачи (N=2/4/8/16)



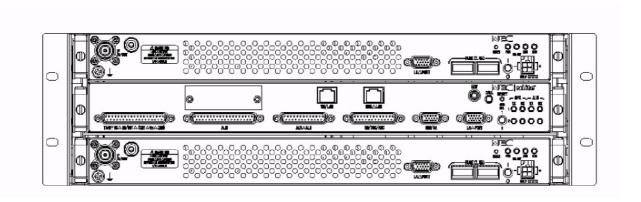



Рисунок 6(e). Вид спереди на 1+1 IDU 3U 4 x 2 Мбит/с фиксированной скоростью передачи

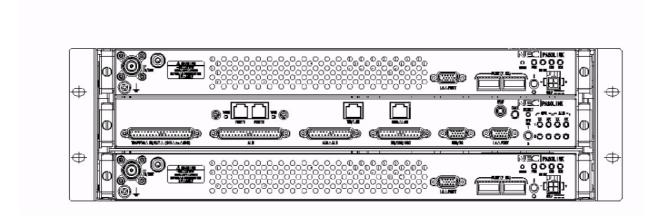



Рисунок 6(f). Вид спереди на 1+1 IDU 3U с интерфейсом LAN 4 x 2 Мбит/с с фиксированной скоростью передачи

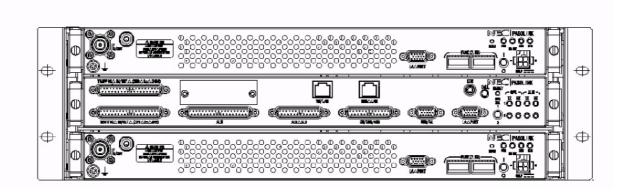



Рисунок 6(g). Вид спереди на 1+1 IDU 3U N x 2 Мбит/с с произвольной скоростью передачи (N=2/4/8/16)

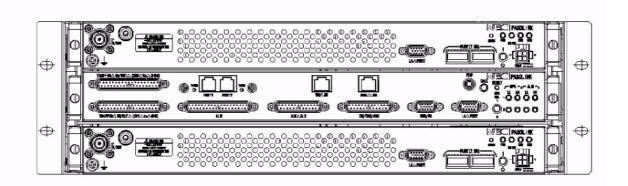



Рисунок 6(h). Вид спереди на 1+1 IDU 3U с интерфейсом LAN N x 2 Мбит/с с произвольной скоростью передачи (N=2/4/8/16)

## 3. НАДЕЖНОСТЬ И КАЧЕСТВО

Система PASOLINK корпорации NEC использует передовые технологии VLSI, MIC и MMIC для всей полупроводниковой электрической схемы от входа данных до радиочастотного выхода.

Заводы NEC располагаются во всем мире, и управление качеством тщательно контролируется на каждом шаге производства, таких как выбор колмпонентов, сборка, установка и испытание. Система контроля качества NEC, используя Технику проектирования с нулевым дефектом и значением, распространяется на каждый аспект производства и проверки в соответствии со строгими программами Управления всеобщим качеством.

Ожидаемое среднее время между отказами (MTBF) для каждого из блоков IDU и ODU свыше 400000 часов.



Пустая страница.



#### **ИНТЕРФЕЙС** 4

Cистема PASOLINK NEC имеет стандартные характеристики интерфейса ITU-T, которые указаны ниже:

## 1. Цифровой интерфейс сигналов

• Скорость передачи сигналов:

4х2 Мбит/с Фиксированная скорость

2x10/100 Base-T(X)

Произвольная скорость 2/4/8/16х2 Мбит/с

2x10/100 Base-T(X)

1х2 Мбит/с (Опция в 16х2 Мбит/с) Дополнительный сигнал

> Дополнительный сигнал может использоваться как 10 BASE-T с дополнительной платой "SC LAN

INTFC".

2 Мбит/с: HDB-3 (ITU-T G.703) Интерфейс

10/100 Base-T(X): IEEE 802.

2 Мбит/с: 75 Ом /120 Ом (выбирается) Сопротивление

2 Мбит/c: D-sub (75/120 Ом) Соединитель

2x10/100 Base-T(X): RJ45

Дополнительный сигнал: RJ45

2. Служебный канал (SC)

1 служебный канал Порт SC1

Порт SC2 и SC3 2 аналоговых канала SC (0.3-3.4 кГц)[Опция]

или 2 асинхронный канала 9.6 кбит (RS-232C или

RS-422)[Опция] или 2 расширенных канала

аварийного сигнала [опция]

(SC2 и SC3 расположены на одной плате.)

Порт SC4 1 асинхронный канал 9.6 кбит (RS-

232С)[Стандарт]

или 1 канал 64 кбит (G.703 или V11)[Опция]

1 асинхронный канал 9.6 кбит (RS-232C)/RS-Порт SC5

422/RS-485: выборается)[Стандарт]

Эти порты расположены в разъеме D-sub (обозначен "OW / ASC / DSC").

3. РЧ порт ввода/ вывода

• Интерфейсный фланец :

Типа непосредственного

крепления антенны:

Оригинальный интерфейс NEC (13-38 ГГц)

Коаксиальный тип

7/8 ГГц: N (розетка)

интерфейса:

Волноводный тип

7/8 ГГц: PDR84 (опция)

интерфейса:

13/15 ГГц: PBR140 18/23 ГГц: PBR220

26/28 ГГц: PBR260 38 ГГц: PBR320

Поляризация Изменяемая (Вертикальная или Горизонтальная)

# 4. Интерфейс параллельного аварийного сигнала

Интерфейс
 Соединитель
 Релейный контакт (формы C)
 D-sub (обозначен "AUX ALM")

5. Основной трафик, Ethernet (10/100 Base-T(X))

• Тип : 10 Base-T/100 Base-TX (автоопределение или

фиксированный)

• Номер порта и интерфейс: 2 (Каждый порт разделен), RJ45

• Скорость передачи (выбираемая) и остальные каналы Е1 как показано ниже

| Пропускная<br>способность | Порт 1<br>(приоритетный канал) | Порт 2             | Доступный канал Е1 |
|---------------------------|--------------------------------|--------------------|--------------------|
| 4х2 Мбит/с                | -                              | -                  | 4                  |
|                           | 2 Мбит/с                       | 2/NA Мбит/с        | 2/3                |
|                           | 4 Мбит/с                       | 4/2/NA Мбит/c      | 0/1/2              |
|                           | 8 Мбит/с                       | -                  | 0                  |
| 8х2 Мбит/с                | -                              | -                  | 8                  |
|                           | 2 Мбит/с                       | 2/NA Мбит/с        | 6/7                |
|                           | 4 Мбит/с                       | 4/2/NA Мбит/с      | 4/5/6              |
|                           | 8 Мбит/с                       | 8/4/2/NA Мбит/с    | 0/2/3/4            |
|                           | 16 Мбит/с                      | -                  | 0                  |
| 16х2 Мбит/с               | -                              | -                  | 16                 |
| !                         | 2 Мбит/с                       | 2/NA Мбит/c        | 14/15              |
| ,                         | 4 Мбит/с                       | 4/2/NA Мбит/c      | 12/13/14           |
|                           | 8 Мбит/с                       | 8/4/2/NA Мбит/с    | 8/10/11/12         |
|                           | 16 Мбит/с                      | 16/8/4/2/NA Мбит/с | 0/4/6/7/8          |
|                           | 32 Мбит/с                      | -                  | 0                  |

• Управление потоком : Дуплексный или полудуплексный

(противодавление)

• Способ пересылки данных : Коммутационный

(Эта интерфейсная плата работает как "Ethernet

Bridge" и соответствует IEEE802.3)

Примечание: В случае применения основного траффика Ethernet, в то же самое время могут использоваться и порты Ethernet, и порты E1. Однако число портов E1 ограничивается в соответствии с выбранной скоростью передачи Ethernet, как показано выше в таблице.



## 5. РАССМОТРЕНИЕ КОНСТРУКЦИИ

## Емкость сети

В случае применения систем N x 2 Мбит/с, каждый порт ввода/вывода I/O является независимым, поэтому 2 Мбит/с может использоваться для разных применений – таких, как ретрансляция магистральных линий связи 2 Мбит/с или видеоконференция.

#### Антенна

Полный перечень антенн Pasolink включает в себя антенны с диаметром от 0.3 м до 1.8 м. Они сконструированы так, чтобы удовлетворять строгим требованиям механической жесткости. При использовании конфигурации 1+0 все антенны Pasolink с диаметром от 0.3 м до 1.8 м могут быть непосредственно установлены на ODU. Это влияет на стоимость и характеристики надежности и делает установку более быстрой и легкой. Конструкция установки на опору Pasolink проектируется таким образом, что ODU может быть заменен на месте, сохраняя конструкцию антенны и монтажного кронштейна, включая ориентирование. Рефлекторы антенн покрыты белой диффузионной краской, крепежная конструкция оцинковывается методом горячего цинкования.

## Приемопередатчик (ODU)

Структурная схема ODU показана на Рисунке 7.

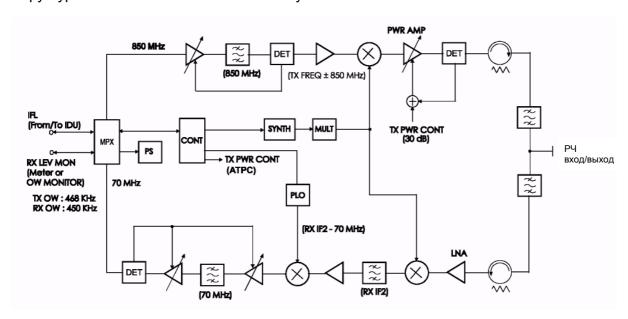



Рисунок 7(a). Структурная схема ODU (13/15/18/23/26/28/38 ГГц)

NEC

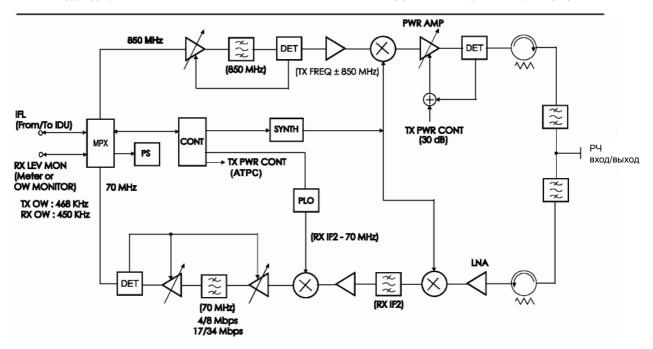



Рисунок 7(b). Структурная схема ODU (7/8 ГГц)

Примопередатчик предназначен для работы с цифровым сигналом 4/8/17/34 Мбит/с в диапазонах 7/8/13/15/18/23/26/28/38 ГГц. Оборудование сконструировано так, чтобы противостоять тяжелым погодным условиям. Для достижения эффективного ценового исполнения применена квадратурная фазовая манипуляция (4PSK). Рисунок 9 показывает блок внешней установки с указанием веса и габаритных размеров.

Во всех радиочастотных цепях ODU применены современные технологии интегральных схем, например, MMIC и MIC.

## Блок внутренней установки (IDU)

Общая структурная схема IDU показана на Рисунке 8.

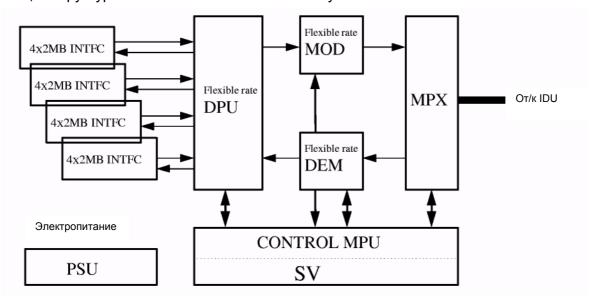



Рисунок 8. Основная структурная схема of IDU (1 канал).



Блок внутренней установки спроектирован для преобразования сигналов в уровень ПЧ 4PSK и наоборот. Цифровой служебный канал (DSC) построен по технике согласования скорости предачи (вставки в информационный поток дополнительных битов), для обеспечения канал голос/факс применен кодек ИКМ. Все функции цифровой обработки реализованы на печатных платах с использованием технологий LSI, VLSI и технологии интегрального построения схем. Подробные структурные схемы блока внутренней установки показаны на Рисунке 10(а) (нерезервированная система) и Рисунке 10(b) (резервированная система).

#### Резервированная система

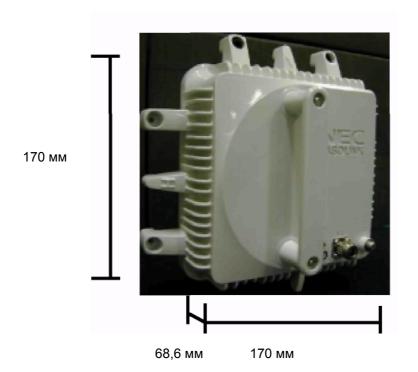
Система Pasolink возможна в конфигурациях: нерезервированная 1+0 или резервированная 1+1 с горячим резервированием, с горячим резервированием/пространственным разнесением, двухканальная. Резервированная система дублирует важные компоненты системы для увеличения эффективности функционирования системы. Блок внутренней установки для нерезервированной системы имеет высоту 1RU и может быть установлен на стандартную стойку 19". В резервированной системе 1+1 блок внутренней установки имеет высоту 3 RU.

Возможны две опции для конфигурации внешнего оборудования. Первая – с использованием одной антенны и РЧ делителя/сумматора в качестве схемы разветвления. Вторая опция заключается в использовании конфигурации с двумя антеннами, без устройства разветвления, крепление двух антенн производится непосредственно на блок внешней установки. В системе SD необходима двух антенная система. В обоих случаях может быть использован стандартный 1+0 ODU, который идентичен на 100% в конфигурации 1+0 и 1+1 (обратитесь, пожалуйста, к Рисункам 5(а), 5(b), 5(c) and 5(d)).

#### Формирование спада спектра

И на передающей, и на приемной сторонах выполнено формирование спектра по Найквисту пропорционально корню квадратному.

#### Коаксиальный кабель


Коаксиальный кабель служит межблочным соединением между приемопередатчиком (ODU) и устройством полосы частот модулирующих сигналов (IDU). Кабель обеспечивает прием/передачу сигналов данных ввода/вывода, мощности электропитания постоянного тока, аварийных сигналов, мощности на передачу, сигналов управления частотой, сигналов отображения уровня приема и первичного напряжения ODU, и пары служебных сигналов. В зависимости от типа кабеля между IDU и ODU может быть обеспечено расстояние свыше 450 м.

Из-за использования различных ПЧ (Промежуточная частота) для передачи (850 МГц) и приема (70 МГц) достаточно одного коаксиального кабеля. Это дает возможность сделать установку более быстрой и легкой.

#### Источник электропитания

Номинальное напряжение постоянного тока источника электропитания -48 В. Однако гарантированный диапазон номинальных напряжений тэтого устойства лежит в пределах -20...-60 В. Таким образом, достигнута унификация между модулями для всей сети, даже если в других местах установки подводится другое напряжение постоянного тока. Также возможно использование напряжение +24, +48 В постоянного тока. Когда необходимо открыть крышку, во избежание риска электрического удара убедитесь, что кабель электропитания отсоединен.





Вес 3 кг

Примечание: предыдущие рисунки показывают внешние размеры, исключая монтажные проушины, выступы, ручку, волноводный фланец и разъемы.

Рисунок 9. Блок внешней установки (7-38 ГГц)

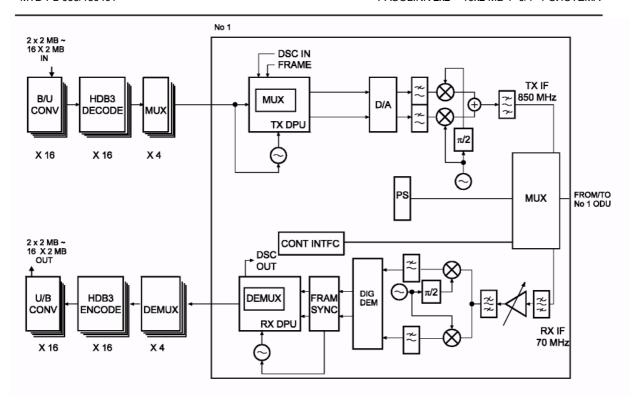



Рисунок 10(a). Структурная схема Системы 2X2-16X2 Мбит/с 1+0 IDU

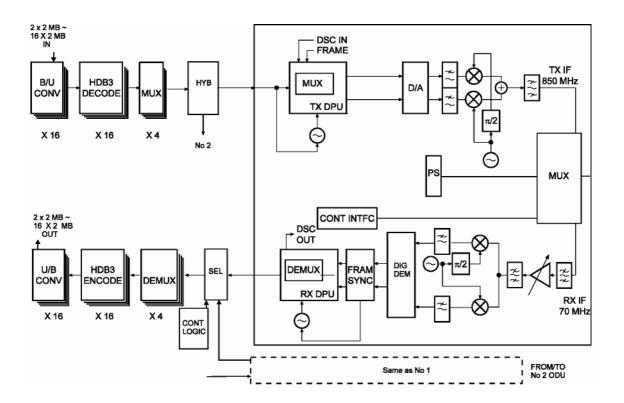



Рисунок 10(b). Структурная схема Системы 2X2-16X2 Мбит/с 1+1 IDU

Пустая страница.

## 6. СИСТЕМА УПРАВЛЕНИЯ СЕТЬЮ (ОПЦИЯ)

## 6.1 ВВЕДЕНИЕ

Система управления сетью (NMS) для PASOLINK обеспечивает простой и удобный для пользователя графический интерфейс радиооборудования короткой линии связи серии PASOLINK NEC.

Это программное обеспечение, базирующееся на ОС Windows-NT, осуществляет удаленные контроль и управление за состоянием и конфигурацией всей сети PASOLINK вместе с дополнительным оборудованием, а также за функционированием действующих радиорелейных линий.

Ключевыми элементами NMS для PASOLINK являются следующие.

## Центральный компьютер: Система управления сетью PASOLINK (PNMS)

Компьютер для PNMS располагается в центре или региональном центре.

PNMS обеспечивает единственную точку доступа, откуда возможен непрерывный контроль и управление всей сетью. Программное обеспечение PNMS содержит обзорные карты сети и подсетей для обеспечения легкого, «одним взглядом», обзора целой сети.

## Мобильный терминал: Терминал управления сетью PASOLINK (PNMT)

В целях технического обслуживания может быть использован мобильный терминал, состоящий из переносного ПК с ОС Windows 2000/XP™ и упрощенной версии программного обеспечения управления сетью PASOLINK, называемый PNMT.

В этой конфигурации можно осуществлять контроль и управление одной линией связи PASOLINK в данный момент времени. Любая линия связи в сети, соединенная через цифровой служебный канал, может дистанционно контролироваться и управляться с переносного ПК.

## Плата управления PASOLINK (PM CARD)

Плата управления PASOLINK (PM CARD) - это дополнительный сменый модуль для IDU PASOLINK. PM CARD отвечает за связь между терминалом PASOLINK и системой управления сетью. Она собирает данные о событиях и функционировании от оборудования PASOLINK и сохраняет их. Платы управления могут связываться друг с другом через один из служебных каналов для осуществления удаленного доступа к любому PASOLINK в сети из точки единственного доступа. Рисунок 11 показывает концепцию построения NMS для PASOLINK.



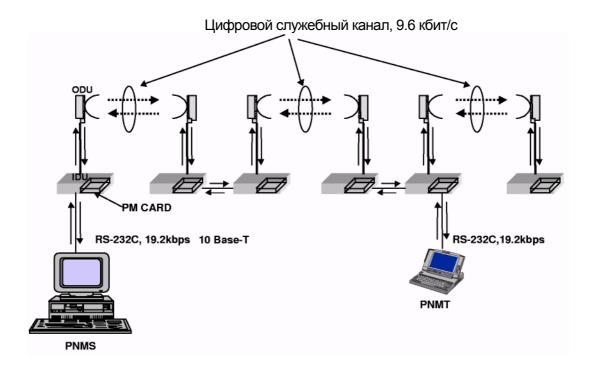



Рисунок 11. Концепция NMS

#### 6.2 Свойства

#### 6.2.1 Стандартная платформа

Для обеспечения простой работы и ремонтопригодности PNMS требует наличия стандартного ПК с ОС Windows-2000/XP™. PNMT требует наличия ПК с ОС Windows-2000/XP™. Для создания высоконадежной системы для PNMS также поставляется система UNIX.

## 6.2.2 Удобная работа пользователя

PNMS отображает обзор сети одним щелчком и ниспадающими меню для получения подробной информации о состоянии и для изменения конфигурации элементов сети.

Многоуровневая структура окон обеспечивает легкий доступ к интересующей станции PASOLINK и впоследствии к интересующему компоненту.

Начиная с карты, показывающей подгруппы, следуя за картами, показывающими конфигурации различных подгрупп, оператор может быстро найти обзорное окно любой станции PASOLINK.



# 6.2.3 Система контроля и управления, ориентированная на линию связи

Для удобства работы PNMS/PNMT автоматически отображают состояние противоположной станции PASOLINK вместе с ключевыми параметрами связи.

В рамках графического представления PASOLINK, ключевые компоненты, как например, устройство внешней установки (ODU), устройство внутренней установки (IDU) и плата управления PASOLINK (PM CARD), отмечены по разному. Подробная информация для каждого из компонентов может быть найдена в следующих окнах.

## 6.2.4 Удаленный доступ и управление

PNMS обеспечивает удаленный доступ к любому терминалу в сети через один из служебных каналов. Кроме того, обеспечивается дистанционное управление различными параметрами, относящимися к линии связи, такими как, мощность передачи и назначение частотн. PNMT обеспечивает дистанционный доступ к терминалу в пределах подсети.

## 6.2.5 Регистрация событий

События в работе сети и системе управления автоматически сохраняются и выводятсяв окне регистрации событий. Отображаемые события могут быть отфильтрованы для предоставления обзора только по выбранным событиям и только для выбранного периода времени (только PNMS).

Регистрируются следующие события:

- Изменение состояния
- Наступление аварии
- Аварийное восстановление
- Инициирование управления
- Изменение параметра

## 6.2.6 Управление сигналами аварий (только PNMS)

Предусмотрены два окна регистрации аварий. Одно отображает обзор всех активных сигналов аварий в сети и одно обеспечивает исторический обзор последних возникших аварий и восстановлений. Отображаемые события могут быть отфильтрованы для представления обзора только по выбранным авариям и только для выбранного периода времени.



## 6.2.7 Контроль характеристик ITU-T G826

PNMS/PNMT дают возможность восстановления данных функционирования всех указанных станций PASOLINK и соответствующих им радиолиний в соответствии с ITU-T спецификации G.826.

С этой целью измеряются следующие параметры:

- Соотношение секунд, пораженных ошибками (ESR)
- Соотношение секунд, сильно пораженных ошибками (SESR)
- Коэффициент фоновых блочных ошибок (BBER)

Монитор функционирования может отобразить как табличное представление, так и графическое представление (только PNMS) и на выбранный период времени (только PNMS).

#### 6.2.8 Безопасность

Пользователи регистрируются посредством имени логина и пароля.

Для защиты сети и системы управления сетью от несанкционированного доступа или несанкционированных модификаций определены десять для PNMS и пять для PNMT уровней для пользователей с различными привилегиями.

## 6.2.9 Интерфейм SNMP (только PNMS, опция)

Чтобы сделать оборудование PASOLINK неотъемлемой частью более высокого уровня системы управления сетью, PNMS обеспечивается дополнительным интерфейсом SNMP.



## 7. ХАРАКТЕРИСТИКИ

## **7.1** Общее

| Пункт                                   | 13 ГГц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 ГГц     | 18 ГГц        | 23 ГГц              | 26 ГГц        | 38 ГГц        |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------------------|---------------|---------------|
| Частотный<br>диапазон [ГГц]             | 12.75-13.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.5-15.35 | 17.7-19.7     | 21 .2-23.6          | 24.5-26.5     | 37.0-39.5     |
| Частотный                               | F.497-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F.636-3    | F.595-6       | F.637-3             | F.748-3       | F.749-1       |
| План                                    | CEPT/ERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CEPT/ERC   | F.191         | CEPT/ERC            | CEPT/ERC      | CEPT/ERC      |
| ITU-R/CEPT                              | REC12-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REC12-07   | CEPT/ERC      | REG T/R 13-02       | REG T/R 13-02 | REG T/R 12-01 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | REC12-03      | Приложение А        | Приложение В  |               |
| Разделение каналов                      | 3.5 МГц (4Мб) / 7 МГц (8Мб) / 14 МГц (17Мб;13.75 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц (34Мб; 27.5 МГц также для 18 МГц) / 28 МГц также для 18 МГц также для 18 МГц) / 28 МГц также для 18 МГц также для |            |               | ц также для 18 МГц) |               |               |
| Разнос каналов приема передачи РЧ (МГц) | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 420        | 1008          | 1008                | 1008          | 1260          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 728        | 1010          | 1200                |               |               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 315        | 340           | 1232                |               |               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 490        | 1560          |                     |               |               |
| эмс                                     | Соответствует ETS300 385 Класс В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                     |               |               |
| Электропитание                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2         | 2060 / +20 +6 | 60 В постоянного то | ка            |               |

| Пункт                                      | 7 ГГц                            | 7 ГГц                                          | 7.5 ГГц                 | 8 ГГц                 | 8 ГГц                 | 8 ГГц                 |
|--------------------------------------------|----------------------------------|------------------------------------------------|-------------------------|-----------------------|-----------------------|-----------------------|
| Частотный диапазон [ГГц]                   | 7.125-7.725                      | 7.125-7.725                                    | 7.425-7.9               | 7.725-8.275           | 8.275-8.5             | 7.9-8.4               |
| Частотный план<br>ITU-R/CEPT               | 385-6                            | 385-6<br>Приложение 1<br>CEPT/ERC REG<br>02-06 | 385-6<br>Приложение 4   | 386-6<br>Приложение 1 | 386-6<br>Приложение 3 | 386-6<br>Приложение 4 |
| Разделение каналов                         |                                  | 3.5 МГц                                        | (4Мб) / 7 МГц (8Мб) / 1 | 4 МГц (1 7Мб) / 28 МГ | <b>т</b> ц (34Мб)     |                       |
| Разнос каналов приема<br>передачи РЧ (МГц) | 161                              | 154                                            | 245                     | 311.32                | 119<br>126            | 151.614               |
| эмс                                        | Соответствует ETS300 385 Класс B |                                                |                         |                       |                       |                       |
| Источник электропитания                    |                                  |                                                | -2060 / +20 +60         | В постоянного ток     | а                     |                       |



| Пот                  | гребление энергии (приблизительно при - 48                               | В постоянного тока)                                                      |
|----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                      | 1+0                                                                      | 1+1                                                                      |
| UQI                  | 16 Вт (4х2 Мбит/с, фиксированная скорость) 18 Вт (произвольная скорость) | 35 Вт (4х2 Мбит/с, фиксированная скорость) 40 Вт (произвольная скорость) |
| ODU                  | 23 Вт                                                                    | 23 Вт х2                                                                 |
| Дополнительная плата | PM Card                                                                  | 4.5 Вт                                                                   |
|                      | DSCINTFC                                                                 | 1 Вт                                                                     |
|                      | WAYSIDE INTFC                                                            | 1 Вт                                                                     |
|                      | ASCINTFC                                                                 | 1 Вт                                                                     |
|                      | ALM INTFC                                                                | 1 Вт                                                                     |
|                      | 64K INTFC                                                                | 1 Вт                                                                     |
|                      | SC LAN INTFC                                                             | 9 Вт                                                                     |



## 7.2 1+0 ODU (блок внешней установки)

| Nº | Пункт                                                            | 13 ГГц | 15 ГГц        | 18 ГГц      | 23 ГГц      | 26 ГГц  | 38 ГГц                       | Гарантированное<br>значение                  |
|----|------------------------------------------------------------------|--------|---------------|-------------|-------------|---------|------------------------------|----------------------------------------------|
| 1  | Выходная мощность (номинал в дБм) (измеряемая на антенном порту) | +25    | +23           | +23         | +23         | +20     | +15                          | +1 5                                         |
| 2  | Управление мощностью                                             |        | 0 30 <i>p</i> | цБ, с шагол | и 1 дБ, пер | еменное |                              | ±1.0 дБ                                      |
| 3  | Диапазон режима АТРС                                             |        | 0             | 30 дБ, с    | шагом 1 д   | цБ      |                              |                                              |
| 4  | Стабильность частоты                                             | ±5 ppm |               |             | ±10 ppm     |         |                              |                                              |
| 5  | Коэф-т шума приемника<br>(на антенном порту)                     | 4.5 дБ | 4.5 дБ        | 5.5 дБ      | 6.5 дБ      | 7.0 дБ  | 7.5 дБ                       | +2 дБ (13/15/18 ГГц)<br>+1 .5 дБ (23/38 ГГц) |
| 6  | Пороговый уровень (дБм) (измеряемый на антенном порту)           |        |               |             |             |         |                              |                                              |
|    | BER = 10 <sup>-3</sup> 34 M6                                     | -84.5  | -84.5         | -83.5       | -82.5       | -82.0   | -81.5                        | +2.5 дБ                                      |
|    | 17 Мб                                                            | -87.5  | -87.5         | -86.5       | -85.5       | -85.0   | -84.5                        | +2.5 дБ                                      |
|    | 8 Мб                                                             | -90.5  | -90.5         | -89.5       | -88.5       | -88.0   | -87.5                        | +2.5 дБ                                      |
|    | 4 Mб                                                             | -93.5  | -93.5         | -92.5       | -91.5       | -91.0   | -90.5                        | +2.5 дБ                                      |
|    | BER = 10 <sup>-6</sup> 34 Mf                                     | -81.0  | -81.0         | -80.0       | -79.0       | -78.5   | -78.0                        | +2.5 дБ                                      |
|    | 17 Мб                                                            | -84.0  | -84.0         | -83.0       | -82.0       | -81.5   | -81.0                        | +2.5 дБ                                      |
|    | 8 Мб                                                             | -87.0  | -87.0         | -86.0       | -85.0       | -84.5   | -84.0                        | +2.5 дБ                                      |
|    | 4 Mб                                                             | -90.0  | -90.0         | -89.0       | -88.0       | -87.5   | -87.0                        | +2.5 дБ                                      |
| 7  | Коэффициент усиления системы (дБ) (измеряемый на антенном порту) |        |               |             |             |         |                              |                                              |
|    | BER = 10 <sup>-3</sup> 34 M6                                     | 109.5  | 107.5         | 106.5       | 105.5       | 102.0   | 96.5                         | -4.0 дБ                                      |
|    | 17 Мб                                                            | 112.5  | 110.5         | 109.5       | 108.5       | 105.0   | 99.5                         | -4.0 дБ                                      |
|    | 8 Мб                                                             | 115.5  | 113.5         | 112.5       | 111.5       | 108.0   | 102.5                        | -4.0 дБ                                      |
|    | 4 Mб                                                             | 118.5  | 116.5         | 115.5       | 114.5       | 111.0   | 105.5                        | -4.0 дБ                                      |
|    | BER = 10 <sup>-6</sup> 34 M6                                     | 106.0  | 104.0         | 103.0       | 102.0       | 98.5    | 93.0                         | -4.0 дБ                                      |
|    | 17 Мб                                                            | 109.0  | 107.0         | 106.0       | 105.0       | 101.5   | 96.0                         | -4.0 дБ                                      |
|    | 8 Мб                                                             | 112.0  | 110.0         | 109.0       | 108.0       | 104.5   | 99.0                         | -4.0 дБ                                      |
|    | 4 Mб                                                             | 115.0  | 113.0         | 112.0       | 111.0       | 107.5   | 102.0                        | -4.0 дБ                                      |
| 8  | Быстрая перестройка частоты (МГц без замены фильтров)            | 56     | 56- 100       | 252         |             | 280     |                              | -                                            |
| 9  | Максимальный входной<br>уровень                                  |        | L             | -15 дБм (н  | ет ошибок)  | )       |                              | -                                            |
| 10 | Доступные измерения                                              |        | Ур            | овень при   | емного сигн | нала    |                              | -                                            |
| 11 | Температурный диапазон                                           |        |               |             | -           |         |                              | -33°C + 50°C                                 |
|    |                                                                  |        |               |             |             |         | (-40°С + 55°С)*<br>*реальный |                                              |

<sup>\*</sup> Аварийные величины показаны в Таблице 2.

Это также применимо для системы 1 + 1 с двухантенной конфигурацией как показано на Рисунке 5(b). При использовании NEC BR UNIT дополнительные потери составляют 7 дБ (передача + прием).

NEC

<sup>\*</sup> Температура хранения: -40°С ... + 70°С (для всех ODU)

| Nº | Пункт                                                                               | 7/8 ГГц                                    | Гарантированное<br>значение                  |  |  |
|----|-------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|--|--|
| 1  | Выходная мощность (номинал в дБм) (измеряемая на антенном порту)                    | +27                                        | ±1.5                                         |  |  |
| 2  | Управление мощностью                                                                | 0 30 дБ, с шагом 1 дБ, переменное          | ±1.0 дБ                                      |  |  |
| 3  | Диапазон режима АТРС                                                                | 0 30 дБ, с шагом 1 дБ                      |                                              |  |  |
| 4  | Стабильность частоты                                                                | ± 5 ppm                                    | ±1 0 ppm                                     |  |  |
| 5  | Коэф-т шума приемника (на антенном порту)                                           | 4.5 dB                                     | +2 дБ                                        |  |  |
| 6  | Пороговый уровень (дБм) (измеряемый на антенном порту) ВЕR = 10 <sup>-3</sup> 34 Мб | 245                                        | .055                                         |  |  |
|    |                                                                                     | -84.5                                      | +2.5 дБ                                      |  |  |
|    | 17 Мб                                                                               | -87.5                                      | +2.5 дБ                                      |  |  |
|    | 8 Mб                                                                                | -90.5                                      | +2.5 дБ                                      |  |  |
|    | 4 Mб                                                                                | -93.5                                      | +2.5 дБ                                      |  |  |
|    | BER = 10 <sup>-6</sup> 34 M6                                                        | -81.0                                      | +2.5 дБ                                      |  |  |
|    | 17 M6                                                                               | -84.0                                      | +2.5 дБ                                      |  |  |
|    | 8 Мб                                                                                | -87.0                                      | +2.5 дБ                                      |  |  |
|    | 4 M6                                                                                | -90.0                                      | +2.5 дБ                                      |  |  |
| 7  | Коэффициент усиления системы (дБ) (измеряемый на антенном порту)                    |                                            |                                              |  |  |
|    | BER = 10 <sup>-3</sup> 34 M6                                                        | 111.5                                      | -4.0 дБ                                      |  |  |
|    | 17 M6                                                                               | 114.5                                      | -4.0 дБ                                      |  |  |
|    | 8 Мб                                                                                | 117.5                                      | -4.0 дБ                                      |  |  |
|    | 4 M6                                                                                | 120.5                                      | -4.0 дБ                                      |  |  |
|    | BER = 10 <sup>-6</sup> 34 M6                                                        | 108.0                                      | -4.0 дБ                                      |  |  |
|    | 17 Мб                                                                               | 111.0                                      | -4.0 дБ                                      |  |  |
|    | 8 Мб                                                                                | 114.0                                      | -4.0 дБ                                      |  |  |
|    | 4 Mб                                                                                | 117.0                                      | -4.0 дБ                                      |  |  |
| 8  | Быстрая перестройка частоты (МГц без замены фильтров)                               | 38 - 68 (зависит от частоты сдвига)        | -                                            |  |  |
| 9  | Максимальный входной уровень                                                        | льный входной уровень -15 дБм (нет ошибок) |                                              |  |  |
| 10 | Доступ для измерения                                                                | Уровень сигнала RX                         | -                                            |  |  |
| 11 | Температурный диапазон                                                              | -                                          | -33°С + 50°С<br>(-40°С + 55°С)*<br>*реальный |  |  |

<sup>\*</sup> Аварийные величины показаны в Таблице 2.

Это также применимо для системы 1 + 1 с двухантенной конфигурацией как показано на Рисунке 4(b). При использовании гибридного сумматора, дополнительные потери составляют 7 дБ (передача + прием).



## 7.3 Межблочные соединения (между ODU и IDU)

| Nº | Величина                                                                          | Спецификация                                                       |  |  |  |  |
|----|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| 1  | Межблочные соединения                                                             | Один коаксильный кабель (на канал)                                 |  |  |  |  |
| 2  | Стандартный тип кабеля                                                            | ндартный тип кабеля 5D-FB,<br>8D-FB,<br>10D-FB или 12D-FB          |  |  |  |  |
| 3  | Сигналы Сигнал ПЧ, аварийные, управления, контроля, источника питания и служебный |                                                                    |  |  |  |  |
| 4  | Максимальная длина кабеля                                                         | 150 м (5D-FB)<br>300 м (8D-FB)<br>350 м (10D-FB)<br>450 м (12D-FB) |  |  |  |  |
| 5  | Компенсация в кабеле                                                              | Автоматический компенсация уровня                                  |  |  |  |  |
| 6  | Гарантированный температурный диапазон                                            | -33°C +50°C (рабочий: -40°C +55°C)                                 |  |  |  |  |

Примечание 1: При использовании резервирования с бесконтактным переключателем установите длину каждого из двух кабелей ПЧ одинаковой и не превышающей 50 м.

Примечание 2: Вредное влияние соли

При работе в море или в береговой зоне (в пределах 3 км от береговой линии) для ODU должны быть приняты меры против вредного влияния соли. Пожалуйста, спросите у корпорации NEC, какие принять контрмеры.

Примечание 3 : Влагозащита разъема N типа

Для кабеля ПЧ должныиспользоваться влагозащищенные разъемы N типа, так как к нему приложено 40 В постоянного тока.



## 7.4 IDU (блок внутренней установки)

| Nº | Пункт                                                                                                         | Спецификация                                                                                                                        |
|----|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Тип модуляции                                                                                                 | 4PSK (с дифференциальным кодированием)                                                                                              |
| 2  | Основной интерфейс 16x2 Мбит/с 8x2 Мбит/с 4x2 Мбит/с 2x2 Мбит/с                                               | 2.048 Мбит/с ± 50 ppm                                                                                                               |
| 3  | Служебные каналы                                                                                              | Смотри Таблицу 1                                                                                                                    |
| 4  | Шлейф                                                                                                         | Шлейф по полосе модул-х частот на ближнем конце Шлейф по полосе модул-х частот на дальнем конце                                     |
| 5  | Формирование спектра                                                                                          | Спад пропорционален корню квадратному (α=0.5)                                                                                       |
| 6  | Остаточный BER                                                                                                | Менее, чем 10 <sup>-12</sup> при RSL = -30 дБм                                                                                      |
| 7  | Выход аварийного BER                                                                                          | Регулируемый 10 <sup>-3</sup> /10 <sup>-4</sup> /10 <sup>-5</sup> /10 <sup>-6</sup> (точка ввода сигнала аварийной индикации (AIS)) |
| 8  | Контроль ODU                                                                                                  | Доступ для измерения<br>Уровень принятого сигнала (AGC V)<br>Уровень выходной мощности (TX PWR)                                     |
| 9  | Дисплей СИД                                                                                                   | а) Работа PWR (Зеленый)<br>б) Авария IDU (Красный)*<br>в) Авария ODU (Красный)*<br>г) Обслуживание (Желтый)*                        |
| 10 | Гарантированный температурный диапазон                                                                        | 0°C +50°C<br>(рабочий :-10°C +60°C)<br>(для хранения :-33°C +70°C)                                                                  |
| 11 | Размеры 4x2 Мбит/с фиксированной скорости (75/120 Ом) 2/4/8/16x2 Мбит/с произвольной скорости (75/120 Ом) Вес | Ширина 482 х Глубина 240 х Высота 44 мм (1+0)<br>Ширина 482 х Глубина 240 х Высота 132 мм (1+1)                                     |
|    | 4x2 Мбит/с фиксированной скорости (75/120 Ом) 2/4/8/16x2 Мбит/с проивольной скорости (75/120 Ом)              | Около 4.0 кг, включая все опции (1+0) Около 11.0 кг, включая все опции (1+1)                                                        |

<sup>\*</sup> Аварийные величины показаны в Таблице 2.



#### Таблица 1. Служебные каналы

|              |            |             |             |            |           | DSC       |            |                  |            |            | SV         |
|--------------|------------|-------------|-------------|------------|-----------|-----------|------------|------------------|------------|------------|------------|
|              |            |             |             |            |           |           | 9.6 кбит/с | 6 кбит/с 64 кбит |            | ит/с       | 9.6 кбит/с |
| Порт         | EOW        | ws          | SCLAN       | ALM        | ASC       | RS-232    | RS-422     | RS-485           | G.703      | V.11       | PMC        |
| WS           |            | W           |             |            |           |           |            |                  |            |            |            |
| SC1          | х          |             |             |            |           |           |            |                  |            |            |            |
| SC2          |            |             | L           | ☆          | *         |           | •          |                  |            |            |            |
| SC3          |            |             |             |            |           |           |            |                  |            |            |            |
| SC4          |            |             |             |            |           | Х         |            |                  | <b>*</b> 1 | <b>*</b> 2 |            |
| SC5          |            |             |             |            |           |           | Х          |                  |            |            |            |
| SC6          |            |             |             |            |           |           |            |                  |            |            | 0          |
| Х            | Стандарт   | ная устан   | овка, SC5:  | RS-232/R   | S-422/RS- | -485 выбо | рочно (пр  | ограммное        | управлен   | ие)        | •          |
| WS           | Опция до   | полнитель   | ного сигна  | ала только | на 16 х 2 | Мбит/с    |            |                  |            |            |            |
| L            | При испол  | пьзовании   | "SC LAN     | INTFC"     |           |           |            |                  |            |            |            |
| ☆            | При испол  | пьзовании   | ı "ALM INT  | FC"        |           |           |            |                  |            |            |            |
| *            | При испол  | пьзовании   | ı "ASC INT  | FC"        |           |           |            |                  |            |            |            |
| *            | При испол  | пьзовании   | "DSC INT    | FC"        |           |           |            |                  |            |            |            |
| <b>★1 ★2</b> | При испол  | пьзовании   | ı "64K INTI | -C"        |           |           |            |                  |            |            |            |
| 0            | При испол  | пьзовании   | "PM CAR     | D"         |           |           |            |                  |            |            |            |
| Каждый по    | рт доступе | ен только д | для 1 кана  | ла (исклю  | чительно) | •         |            |                  |            |            |            |

#### ПЕРЕЧЕНЬ ОПЦИОНАЛЬНЫХ ПЛАТ

- 1. SC LAN INTFC: 10 Base-T (Скорость передачи 64 кбит/с)
- 2. WSINTFC(G703): 2,048 Мбит/с G.703
- 3. WS INTFC(LAN): 10 Base-T (Скорость передачи 2 Мбит/с) = SC LAN INTFC при 16х2 Мбит/с
- 4. ALM INTFC: 2 канала внешнего сухого контактного расширения
- 5. ASC INTFC: 2 канала передачи голосового диапазона 0.3 3.4 кГц
- 6. DSC INTFC: 2 канала 9.6 кбит/с RS-232C или RS422 выборочно
- 7. 64K INTFC(G703): 1 канал передачи 64 кбит/с (G.703)
- 8. 64KINTFC(V.11): 1 канал передачу 64 кбит/с (V.11)
- 9. PM CARD (RS2-232C): плата интерфейса PNMS с RS-232C для ПК
- 10. PM CARD(LAN): плата интерфейса PNMS с 10 Base-Т для ПК

#### Внимание:

- 1. Опциональные платы не могут быть удалены без прерывания основного траффика. (Рекомендуется заказывать эти опции с IDU).
- 2. Выбор 64К INTFC для порта SC4 устанавливает программное управление скоростью 64 кбит/с или 9.6 кбит/с.

#### Исключающие условия:

- 1. Выберите одну опцию: SC LAN INTFC или WS INTFC(G.703)
- 2. Выберите одну опцию: SC LAN INTFC, ALM INTFC, ASC INTFC или DSC INTFC
- 3. Выберите одну опцию: 64K INTFC(G.703) или 64K INTFC(V.11)
- 4. Выберите одну опцию: PM CARD(RS-232C) или PM CARD(LAN)

Примечание: Если выбрана опция SC LAN INTFC, то WS INTFC(G.703), ALM INTFC, ASC INTFC и DSC INTFC не могут быть установлены.



#### Таблица 2. Аварийные величины для системы 1 + 0

| #  | Аварийные сигналы, отображаемые | Условие                                                                                                               | СИД аварийной<br>индикации | аварий | суммарны<br>пого сигн<br>ечание 4> | ала (форм | иы С) |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|--------|------------------------------------|-----------|-------|
|    | на ПК                           |                                                                                                                       |                            | Α      | В                                  | С         | D     |
| 1  | INPUT LOSS 1-<br>16             | Потери во входном потоке данных от DTE <                                                                              | IDU                        | *      | *                                  |           |       |
| 2  | AIS RCVD 1-16                   | Принят AIS (все "1") от DTE <Примечание 1>                                                                            | IDU<br><Примечание 5>      |        |                                    |           |       |
| 3  | AIS SEND 1-16                   | AIS (все "1") передан на DTE <Примечание 1>                                                                           | IDU<br><Примечание 5>      |        |                                    |           |       |
| 4  | OUTPUT LOSS<br>1-16             | Потери в выходном потоке данных к DTE <Примечание 1>                                                                  | IDU                        |        | *                                  |           |       |
| 5  | WS INPUT<br>LOSS                | Потери входного трафика доп-го сигнала <Примечание 2,3>                                                               | IDU                        | *      |                                    |           |       |
| 6  | WS AIS RCVD                     | Принят AIS для дополнительного сигнала <Примечание 2,3>                                                               | IDU<br><Примечание 5>      |        |                                    |           |       |
| 7  | WS AIS SEND                     | Передан AIS для дополнительного сигнала <Примечание 2,3>                                                              | IDU<br><Примечание 5>      |        |                                    |           |       |
| 8  | WS OUTPUT<br>LOSS               | Потеря выхода дополнительного сигнала <Примечание 3>                                                                  | IDU                        |        | *                                  |           |       |
| 9  | TX CLK LOSS                     | Потеря тактовых импульсов передатчика                                                                                 | IDU                        | *      |                                    |           |       |
| 10 | FSYNC ALM                       | Рассинхронизация кадра на приеме DPU                                                                                  | IDU                        |        | *                                  |           |       |
| 11 | HIGHBERALM                      | BER>10E-3                                                                                                             | IDU                        |        |                                    | *         |       |
| 12 | LOW BER ALM                     | BER> 10E-6                                                                                                            | IDU                        |        |                                    |           |       |
| 13 | BER ALM                         | Ухудшение BER (10E-3/-4/-5/-6 выбирается) <Этот сигнал аварии используется для запуска ввода AIS>                     | IDU                        |        | *                                  | *         |       |
| 14 | MOD ALM                         | Петля ФАПЧ модулятора 850 МГц разомкнута                                                                              | IDU                        | *      |                                    |           |       |
| 15 | DEM ALM                         | Рассинхронизация несущей                                                                                              | IDU                        |        | *                                  |           |       |
| 16 | OPR ALM                         | Ошибка связи CPU между IDU и ODU                                                                                      | IDU/ODU<br>мигание         | *      | *                                  |           |       |
| 17 | TX PWR ALM                      | Уменьшение выходной мощности передатчика<br><активируется, когда уровень на 35 дБ меньше, чем установленное значение> | ODU                        | *      |                                    |           |       |
| 18 | RX LEV ALM                      | Уменьшение уровня приема<br><активируется, когда уровень меньше чем<br>-95 дБм +/-5 дБ>                               | ODU                        |        | *                                  |           |       |
| 19 | APC1 ALM                        | Рассинхронизация 1-й местной АПЧ РЧ                                                                                   | ODU                        | *      | *                                  |           |       |
| 20 | APC2 ALM                        | Рассинхронизация 2-й местной АПЧ РЧ                                                                                   | ODU                        | *      | *                                  |           |       |
| 21 | IF INPUT ALM                    | Уменьшение входного уровня ТХ IF<br>< активируется, когда уровень меньше, чем<br>примерно -63 дБм>                    | ODU                        | *      |                                    |           |       |
| 22 | MAI NT                          | Обслуживание системы                                                                                                  | MAI NT                     | МАСКА  | МАСКА                              | МАСКА     | *     |

DTE \* - Оконечное оборудование обработки данных, ООД

<sup>&</sup>lt;Примечание 5> СИД ALM по заводским установкам не светятся. Это можно изменить путем соответствующих установок.



<sup>&</sup>lt;Примечание 1> Неиспользуемый канал/интерфейс маскируются в соответствии с битовой скоростью.

<sup>&</sup>lt;Примечание 2> Применима функция подавления сигнала аварии дополнительного канала. Установка этой функции подавляет появление аварийного сигнала.

<sup>&</sup>lt;Примечание 3> Эта величина маскируется при использовании системы без WS.

<sup>&</sup>lt;Примечание 4> Резюмирование аварийных выходов полностью программируется пользователем; таблица только показывает заводские установки.

## Таблица 3. Аварийные величины для 1 + 1

|          | Аварийные<br>сигналы,<br>отображаемые на | Условие                                                                                                                                             | Индикация<br>СИД аварии<br>на модуляторе | Индикация СИД<br>аварии/переключа-<br>теля на | Выход суммарного аварийно (формы C) <Примечание 4> |       |       | о сигнала |       |   |          |                                                  |
|----------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------|-------|-----------|-------|---|----------|--------------------------------------------------|
|          | ПК                                       |                                                                                                                                                     | на модуляторе                            | переключателе                                 | Α                                                  | В     | С     | D         | E     | F | G        | Н                                                |
| 1        | INPUT LOSS 1-16                          | Потери во входном потоке данных от DTE* <Примечание 1>                                                                                              | IDU                                      | TXNo.1/No.2                                   | *                                                  | *     |       |           |       |   |          |                                                  |
| 2        | AIS RCVD 1-16                            | Принят AIS (все "1") от DTE <Примечание 1>                                                                                                          | IDU<br><Примечание5>                     | TX No.1/No.2<br><Примеачние 5>                |                                                    |       |       |           |       |   |          |                                                  |
| 3        | AIS SEND 1-16                            | AIS (все "1") передан на DTE<br><Примечание 1>                                                                                                      | IDU<br><Примечание5>                     | RX No.1/No.2<br><Примечание 5>                |                                                    |       |       |           |       |   |          |                                                  |
| 4        | OUTPUT LOSS 1-16                         | Потери в выходном потоке данных к DTE <Примечание 1>                                                                                                | IDU                                      | RX No.1 /No.2                                 |                                                    |       | *     | *         |       |   |          |                                                  |
| 5        | WS INPUT LOSS                            | Потери входного трафика доп-го сигнала<br><Примечание 2,3>                                                                                          | IDU                                      | TXNo.1/No.2                                   | *                                                  |       |       |           |       |   |          |                                                  |
| 6        | WS AIS RCVD                              | Принят AIS для дополнительного сигнала<br><Примечание 2,3>                                                                                          | IDU<br><Примечание5>                     | TX No.1/No.2<br><Примечание 5>                |                                                    |       |       |           |       |   |          |                                                  |
| 7        | WS AIS SEND                              | Передан AIS для дополнительного сигнала                                                                                                             | IDU<br><Примечание5>                     | RX No.1/No.2                                  |                                                    |       |       |           |       |   |          |                                                  |
| 8        | WS OUTPUT LOSS                           | <Примечание 2,3> Потеря выхода дополнительного сигнала <Примечание 3>                                                                               | IDU                                      | <Примечание 5><br>RX No.1 /No.2               |                                                    |       | *     | *         |       |   |          |                                                  |
| 9        | TX CLK LOSS 1                            | Потеря тактовых импульсов передатчика                                                                                                               | IDU                                      | TX No.1                                       | *                                                  |       |       |           |       |   |          |                                                  |
| 10       | TX CLK LOSS 2                            | Потеря тактовых импульсов передатчика                                                                                                               | IDU                                      | TX No.2                                       |                                                    | *     |       |           |       |   |          |                                                  |
| 11       | RX CLK LOSS 1                            | Потеря тактовых импульсов приемника                                                                                                                 | IDU                                      | RX No.1                                       |                                                    |       | *     |           |       |   |          |                                                  |
| 12       | RX CLK LOSS 2                            | Потеря тактовых импульсов приемника                                                                                                                 | IDU                                      | RX No.2                                       |                                                    |       |       | *         |       |   |          |                                                  |
| 13       | FSYNC ALM 1                              | Рассинхронизация кадра на приеме DPU                                                                                                                | IDU                                      | RX No.1                                       |                                                    |       | *     |           |       |   |          |                                                  |
| 14       | FSYNC ALM 2                              | Рассинхронизация кадра на приеме DPU                                                                                                                | IDU                                      | RX No.2                                       |                                                    |       |       | *         |       |   |          |                                                  |
| 15       | HIGH BER ALM 1                           | BER>10E-3                                                                                                                                           | IDU                                      | RX No.1                                       |                                                    |       | *     |           |       |   | <u></u>  | <u> </u>                                         |
| 16       | HIGH BER ALM2                            | BER>10E-3                                                                                                                                           | IDU                                      | RX No.2                                       |                                                    |       |       | *         |       |   |          |                                                  |
| 17       | LOW BER ALM 1                            | BER>10E-6                                                                                                                                           | IDU                                      | RX No.1                                       |                                                    |       |       |           |       |   |          |                                                  |
| 18       | LOW BER ALM 2<br>BER ALM 1               | BER>10E-6<br>Ухудшение BER                                                                                                                          | IDU<br>IDU                               | RX No.2<br>RX No.1                            |                                                    |       |       |           |       |   | <u> </u> |                                                  |
| 19       |                                          | (10E-3/-4/-5/-6 выбирается)<br><Этот сигнал аварии используется для                                                                                 | -                                        |                                               |                                                    |       |       |           |       |   |          |                                                  |
| 20       | BER ALM 2                                | Ухудшение BER (10E-3/-4/-5/-6 выбирается) - 3-70т сигнал аварии используется для запуска ввода AIS>                                                 | IDU                                      | RX No.2                                       |                                                    |       |       | *         | *     |   |          |                                                  |
| 21       | MOD ALM 1                                | Петля ФАПЧ модулятора 850 МГц<br>разомкнута                                                                                                         | IDU                                      | TX No.1                                       | *                                                  |       |       |           |       |   |          |                                                  |
| 22       | MOD ALM 2                                | Петля ФАПЧ модулятора 850 МГц<br>разомкнута                                                                                                         | IDU                                      | TX No.2                                       |                                                    | *     | *     |           |       |   |          |                                                  |
| 23       | DEM ALM 1                                | Рассинхронизация несущей                                                                                                                            | IDU                                      | RX No.1                                       |                                                    |       | *     |           |       |   | <u> </u> | <u> </u>                                         |
| 24       | DEM ALM 2                                | Рассинхронизация несущей                                                                                                                            | IDU                                      | RX No.2                                       |                                                    |       |       | *         |       |   | <u> </u> | <u> </u>                                         |
| 25       | OPR ALM1                                 | Ошибка связи CPU между IDU и ODU                                                                                                                    | IDU/ODU<br>мигание                       | TX/RX No.1                                    |                                                    |       |       |           |       |   |          |                                                  |
| 26<br>27 | OPR ALM2<br>TX PWR ALM1                  | Ошибка связи СРИ между IDU и ОDU Уменьшение выходной мощности передатчика <активируется, когда уровень на 35 дБ меньше, чем установленное значение> | ODU ODU                                  | TX/RX No.2<br>TX No.1                         | *                                                  | *     |       | *         |       |   |          |                                                  |
| 28       | TX PWR ALM2                              | Уменьшение выходной мощности<br>передатчика <активируется, когда<br>уровень на 35 дБ меньше, чем<br>установленное значение>                         | ODU                                      | TX No.2                                       |                                                    | *     |       |           |       |   |          |                                                  |
| 29       | RX LEV ALM 1                             | Уменьшение уровня приема<br><активируется, когда уровень меньше —<br>95 дБм +/-5 дБ>                                                                | ODU                                      | RX No.1                                       |                                                    |       | *     |           |       |   |          |                                                  |
| 30       | RX LEV ALM 2                             | Уменьшение уровня приема<br><активируется, когда уровень меньше -<br>95 дБм +/-5 дБ>                                                                | ODU                                      | RX No.2                                       |                                                    |       |       | *         |       |   |          |                                                  |
| 31       | APC1 ALM 1                               | Рассинхронизация 1-й местной АПЧ РЧ                                                                                                                 | ODU                                      | TX/RX No.1                                    | *                                                  | _     | *     | 4         |       |   |          |                                                  |
|          | APC1 ALM 2<br>APC2ALM1                   | Рассинхронизация 1-й местной АПЧ РЧ Рассинхронизация 2-й местной АПЧ РЧ                                                                             | ODU<br>ODU                               | TX/RX No.2<br>TX/RX No.1                      | *                                                  | -     | *     |           |       |   |          | <del>                                     </del> |
|          | APC2ALM2                                 | Рассинхронизация 2-й местной АПЧ РЧ                                                                                                                 | ODU                                      | TX/RX No.2                                    |                                                    | *     |       | *         |       |   |          |                                                  |
| 35       | IF INPUT ALM 1                           | Уменьшение входного уровня ТХ IF<br><активируется, когда уровень меньше<br>примерно -63 дБм>                                                        | ODU                                      | TX No.1                                       | *                                                  |       |       |           |       |   |          |                                                  |
| 36       | IF INPUT ALM 2                           | Уменьшение входного уровня ТХ IF<br><активируется, когда уровень меньше<br>примерно -63 дБм>                                                        | ODU                                      | TX No.2                                       |                                                    | *     |       |           |       |   |          |                                                  |
| 37       | MAINT                                    | Обслуживание системы                                                                                                                                | MAINT                                    |                                               | Маска                                              | Маска | Маска | Маска     | Маска | * |          |                                                  |
| 38       | TX SEL 1                                 | Переключатель ТХ выбирает систему No.1                                                                                                              |                                          | TX No.1                                       |                                                    |       |       |           |       |   | _        | <u> </u>                                         |
| 39       | TX SEL 2                                 | Переключатель ТХ выбирает систему No.2                                                                                                              |                                          | TX No.2                                       | ļ                                                  |       |       |           |       |   |          | <u> </u>                                         |
| 40<br>41 | RX SEL1<br>RX SEL2                       | Переключатель RX выбирает систему No.1 Переключатель RX выбирает систему No.2                                                                       |                                          | RX No.1<br>RX No.2                            |                                                    |       |       |           |       |   | $\vdash$ | *                                                |
| 42       | MDP CPU ALM1                             | Ошибка связи СРU между MD и SW                                                                                                                      |                                          | TX/RX No.1                                    | *                                                  |       | *     |           |       |   | $\vdash$ | <del>                                     </del> |
| 43       | MDP CPU ALM2                             | Ошибка связи CPU между MD и SW                                                                                                                      |                                          | TX/RX No.2                                    |                                                    | *     |       | *         |       |   | -        | <del>                                     </del> |
|          |                                          |                                                                                                                                                     |                                          |                                               |                                                    |       |       |           |       |   | Ш_       |                                                  |

<sup>&</sup>lt;Примечание 1> Неиспользуемый канал/интерфейс маскируются в соответствии с битовой скоростью.



<sup>&</sup>lt;Примечание 2> Применима функция подавления сигнала аварии дополнительного канала. Установка этой функции подавляет появление аварийного сигнала.

<sup>&</sup>lt;Примечание 3> Эта величина маскируется при использовании системы без WS.

<sup>&</sup>lt;Примечание 4> Резюмирование аварийных выходов полностью программируется пользователем; таблица только показывает заводские установки.

<sup>&</sup>lt;Примечание 5> СИД ALM по заводским установкам не светятся. Это можно изменить путем соответствующих установок.

#### 7.5 Гибридный делитель/сумматор

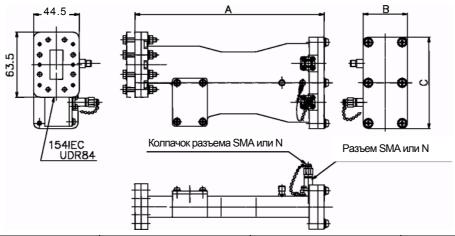
NEC разработал гибридный делитель/сумматор для всего диапазона радиочастот для цифровых радиорелейных систем фиксированной беспроводной связи типа «точкаточка» серии PASOLINK. Этот гибридный сумматор/делитель включает направленный ответвитель, антенный интерфейс, радиомонтажные интерфейсы и поляризаторы. Мощность радиосигнала, принятая антенной с одной поляризацией, разделяется поровну и посылается на два блока внешней установки через гибридный делитель/сумматор для 1+1 резервированных систем.

Есть два типа гибридного делителя/сумматора NEC, один с коаксиально-кабельным типом соединителя для диапазонов 7/8 ГГц и другой с волноводным типом соединителя для диапазонов 13-38 ГГц. Гибридный делитель/сумматор NEC подходит для антенн Andrew или RFS и для всех ODU NEC.



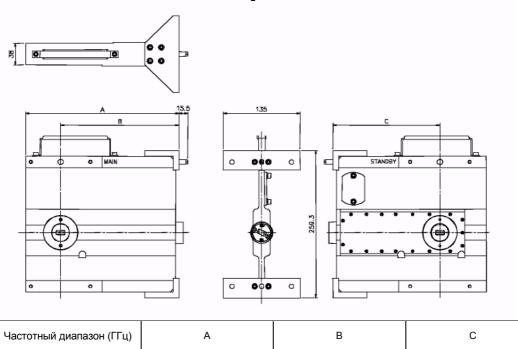
Рисунок 12. 7/8 ГГц гибридный делитель сумматор




Рисунок 13. 13-38 ГГц гибридный делитель/сумматор

## 7.5.1 Технические характеристики

| Частотный         | Полоса          | 1-2 порт             | Макс. потери | Изоляция | КСВН Макс. | Инте                 | Интерфейс     |    |
|-------------------|-----------------|----------------------|--------------|----------|------------|----------------------|---------------|----|
| диапазон<br>[ГГц] | частот<br>[ГГц] | разброс<br>Макс.(дБ) | (дБ)         | Мин.(дБ) |            | (Сторона<br>антенны) | (Сторона ODU) |    |
| 7                 | 7.125-7.9       | 0.5                  | 3.7          | 20       | 1.3        | CPR112G/<br>PDR84    | Разъем SMA    | 14 |
|                   |                 |                      |              |          |            |                      | Разъем N      |    |
| 8                 | 7.7-8.5         | 0.5                  | 3.7          | 20       | 1.3        | CPR112G/<br>PDR84    |               |    |
|                   |                 |                      |              |          |            |                      | Разъем N      |    |
| 13                | 12.75-<br>13.25 | 0.5                  | 3.5          | 20       | 1.2        | R140                 | R140          | 15 |
| 15                | 14.5- 15.35     | 0.5                  | 3.5          | 20       | 1.2        | R140                 | R140          | 15 |
| 18                | 17.7- 19.7      | 0.5                  | 3.5          | 20       | 1.2        | R220                 | R220          | 15 |
| 23                | 21.2-23.6       | 0.5                  | 3.5          | 20       | 1.2        | R220                 | R220          | 15 |
| 26                | 24.5 - 26.5     | 0.5                  | 3.8          | 20       | 1.2        | R260                 | R260          | 15 |
| 38                | 37 - 39.5       | 0.5                  | 3.8          | 20       | 1.2        | R320                 | R320          | 15 |




## 7.5.2 Физические размеры



| Частотный диапазон (ГГц) | А   | В  | С  |
|--------------------------|-----|----|----|
| 7                        | 184 | 43 | 89 |
| 8                        | 178 | 42 | 84 |

Рисунок 14.



| Частотный диапазон (ГГц) | А     | В   | С   |
|--------------------------|-------|-----|-----|
| 13/15                    | 269.3 | 208 | 188 |
| 18/23/26/38              | 263.3 | 202 | 182 |

Рисунок 15.

## 7.5.3 Руководство по установке

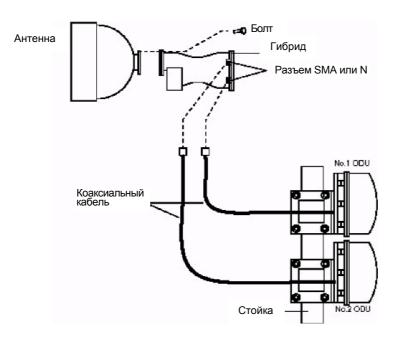



Рисунок 16. 7-8 ГГц делитель/сумматор

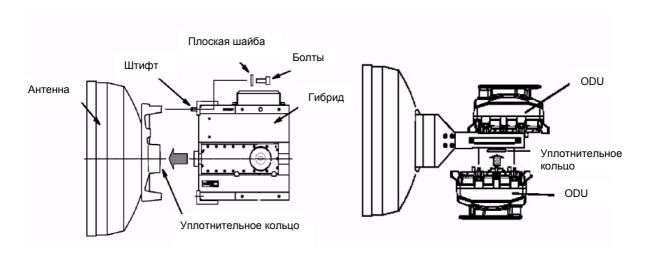



Рисунок 17.Антенна и гибридный делитель/сумматор 13-38 ГГц (вид сбоку)

Рисунок 18.ODU и гибридный делитель/сумматор 13-38 ГГц (вид сверху)

## 7.6 Ортомод (OMT, Ortho-Mode Transducer)

NEC разработал ортомод (ОМТ) для всего диапазона частот радиорелейных станций для волноводного интерфейса оборудования серии PASOLINK цифровых беспроводных фиксированных радиосистем типа «точка-точка». ОМТ состоит из непосредственно преобразоватля-ортомода, антенного интерфейса и интерфейса подключения радиооборудования. В системах 2+0 два независимых радиосигнала, принятых антенной с двойной поляризацией, разделяются в ОМТ и направляются к двум блокам ODU.

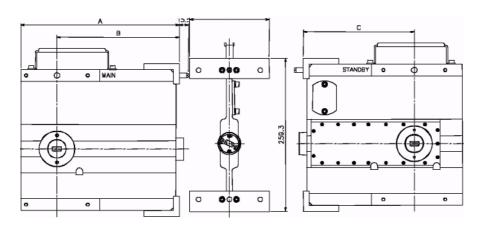
OMT позволяет использовать двойную поляризацию для удвоения емкости передачи системы PASOLINK. OMT NEC имеет соединитель волноводного типа для диапазона частот 13-38 ГГц, который подходит для антенн RFS и всех ODU NEC.



Рисунок 19. Ортомод ОМТ

#### 7.6.1 Свойства

- Интеграция непосредственного монтажа с продуманной конструкцией для серий PASOLINK
- Простая установка
- Высокий XPD (коэффициент подавления кроссполяризации)




## 7.6.2 Технические характеристики

| Диапазон<br>частот<br>[ГГц] | Полоса частот<br>[ГГц] | XPD<br>Мин.[dB] | Потери<br>Макс.[дБ] | Развязка порт-<br>порт<br>Мин.[дБ] | КСВН<br>Макс. | INTERFACE WG<br>INNER DIA. (mm)<br>(сторона антенны) | Интерфейс<br>(сторона ODU) |
|-----------------------------|------------------------|-----------------|---------------------|------------------------------------|---------------|------------------------------------------------------|----------------------------|
| 13                          | 12.75-13.25            | 35              | 0.6                 | 38                                 | 1.3           | 15.0                                                 | R140                       |
| 15                          | 14.5-15.35             | 35              | 0.6                 | 38                                 | 1.3           | 13.5                                                 | R140                       |
| 18                          | 17.7-19.7              | 35              | 0.6                 | 38                                 | 1.3           | 10.5                                                 | R220                       |
| 23                          | 21 .2-23.6             | 35              | 0.6                 | 38                                 | 1.3           | 9.0                                                  | R220                       |
| 26                          | 24.5-26.5              | 35              | 0.8                 | 38                                 | 1.3           | 8.0                                                  | R260                       |
| 38                          | 37-39.5G               | 35              | 1.0                 | 38                                 | 1.3           | 5.5                                                  | R320                       |

## 7.6.3 Физические размеры

Размеры: 259.3(Высота)(включая ручку) x 135(Ширина) x 278.8(Глубина) мм Вес: 4 kg



| Частотный диапазон [ГГц] | A     | В   | С   |
|--------------------------|-------|-----|-----|
| 13                       | 269.3 | 208 | 188 |
| 15                       |       |     |     |
| 18                       | 263.3 | 202 | 182 |
| 23                       |       |     |     |
| 26                       |       |     |     |
| 38                       |       |     |     |
|                          |       |     |     |

Рисунок 20.

#### 7.7 Аттенюатор 38 ГГц передатчика

NEC разработала аттенюатор передатчика 38 ГГц для всего диапазона частот радиорелейных станций для оборудования серии PASOLINK цифровых беспроводных фиксированных радиосистем типа «точка-точка». Аттенюатор передатчика включает направленный аттенюатор, антенный интерфейс, радиомонтажные интерфейсы и поляризатор для обеспечения ослабления только сигнала передатчика. Мощность сигнала, принятая антенной с одной поляризацией, посылается на блок внешней установки (ODU) через аттенюатор передатчика с потерями менее чем 2 дБ. С другой стороны, мощность сигнала передачи, передаваемая от ODU, посылается в антенну через аттенюатор передатчика с ослаблением более чем 30 дБ. Неравномерность частоты затухания реализована независимо от уровня мощности. Как было указано выше, функция аттенюатора передатчика обеспечить отсутствие помех в смежных системах без уменьшения уровня приема. Таким образом, аттенюатор передатчика очень полезен в регионе, где соблюдается строгое регулирование ЭИИМ. Аттенюатор передатчика 38 ГГц NEC подходит для антенн Andrew или RFS и для ODU NEC диапазона 38 ГГц.



Рисунок 21. Аттенюатор 38 ГГц передатчика

#### 7.7.1 Свойства

- Интеграция непосредственного монтажа с продуманной конструкцией для серий PASOLINK
- Простая установка
- Соответствует регулированию ЭИИМ
- Отсутствие помех в соседних системах

NEC

## 7.7.2 Технические характеристики

| Частотный диапазон [ГГц]               | 37.0 39.5                                                                                                |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| КСВН Макс.                             | 1.3                                                                                                      |  |  |
| Вносимые потери по приему, макс. [дБ]  | 2.0                                                                                                      |  |  |
| Ослабление передачи [дБ]               | 32.0 36.0                                                                                                |  |  |
| Ручная настройка мощности, макс. [дБм] | 20                                                                                                       |  |  |
| Интерфейс                              | ANT: оригинальный NEC<br>(Непосредственный монтаж)<br>ODU: оригинальный NEC<br>(Непосредственный монтаж) |  |  |

## 7.7.3 Физические размеры

Размеры: 259.3(Высота)(включая ручку) х 135(Ширина) х 278.8(Глубина) мм

Вес: 4 кг

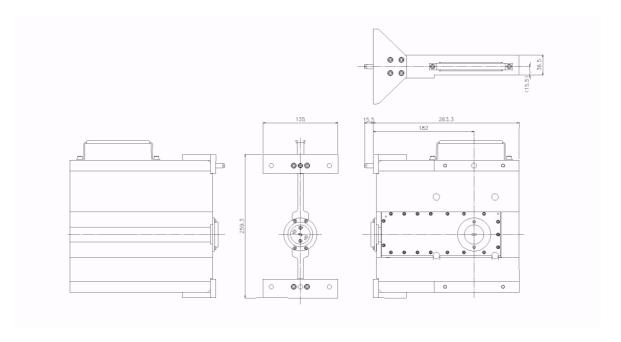



Рисунок 22.



# 7.8 MEHЮ PASOLINK ANTENNA для непосредственного монтажа и характеристики

| Частотный         | Диаметр (м) | Типичные характеристики                            |          |          |      |  |
|-------------------|-------------|----------------------------------------------------|----------|----------|------|--|
| диапазон<br>(ГГц) |             | Коэффициент<br>усиления на средней<br>частоте (дБ) | F/B (дБ) | XPD (дБ) | КСВН |  |
| 13                | 0.6*        | 35.2                                               | 61       | 30       | 1.3  |  |
|                   | 0.8         | 37.8                                               | 63       | 30       | 1.3  |  |
|                   | 1.2*        | 41.5                                               | 67       | 30       | 1.3  |  |
|                   | 1.8         | 45.0                                               | 70       | 32       | 1.3  |  |
| 15                | 0.3*        | 31.1                                               | 53       | 30       | 1.3  |  |
|                   | 0.6*        | 36.3                                               | 58       | 30       | 1.3  |  |
|                   | 0.8         | 38.9                                               | 64       | 30       | 1.3  |  |
|                   | 1.2*        | 42.5                                               | 70       | 30       | 1.3  |  |
|                   | 1.8         | 46.0                                               | 71       | 30       | 1.3  |  |
| 18                | 0.3*        | 33.3                                               | 55       | 30       | 1.3  |  |
|                   | 0.6*        | 38.6                                               | 60       | 30       | 1.3  |  |
|                   | 0.8         | 41.0                                               | 63       | 30       | 1.3  |  |
|                   | 1.2*        | 44.6                                               | 67       | 30       | 1.3  |  |
|                   | 1.8         | 48.0                                               | 70       | 30       | 1.3  |  |
| 23                | 0.2         | 30.6                                               | 51       | 30       | 1.4  |  |
|                   | 0.3*        | 34.9                                               | 61       | 30       | 1.3  |  |
|                   | 0.6*        | 40.1                                               | 66       | 30       | 1.3  |  |
|                   | 0.8         | 42.6                                               | 68       | 30       | 1.3  |  |
|                   | 1.2*        | 46.0                                               | 72       | 30       | 1.3  |  |
|                   | 1.8         | 49.4                                               | 75       | 30       | 1.3  |  |
| 26                | 0.2         | 31.5                                               | 52       | 30       | 1.4  |  |
|                   | 0.3*        | 35.0                                               | 62       | 30       | 1.3  |  |
|                   | 0.6*        | 41.1                                               | 67       | 30       | 1.3  |  |
|                   | 0.8         | 43.6                                               | 70       | 30       | 1.3  |  |
|                   | 1.2*        | 46.9                                               | 73       | 30       | 1.3  |  |
|                   | 1.8         | N/A                                                | N/A      | N/A      | N/A  |  |
| 38                | 0.2         | 34.3                                               | 54       | 30       | 1.3  |  |
|                   | 0.3*        | 39.6                                               | 60       | 30       | 1.3  |  |
|                   | 0.6*        | 44.5                                               | 63       | 30       | 1.3  |  |
|                   | 0.8         | N/A                                                | N/A      | N/A      | N/A  |  |
|                   | 1.2*        | N/A                                                | N/A      | N/A      | N/A  |  |
|                   | 1.8         | N/A                                                | N/A      | N/A      | N/A  |  |

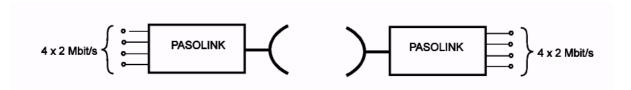
Примечание 1: Антенны 18-38 ГГц снабжены стандартным волноводным фланцем (PBR) и оригинальным интерфейсом PASOLINK.

(Антенны13-15 ГГц снабжены оригинальным интерфейсом PASOLINK, у них отсутствует стандартный волноводный фланец.)

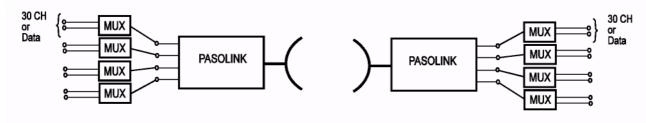
Примечание 2: Пожалуйста, не используйте эту таблицу в случае конфигурации удаленного монтажа 7,8,13 и 15 ГГц.

Примечание 3: Эта таблица показывает типичные величины для ориентировки.

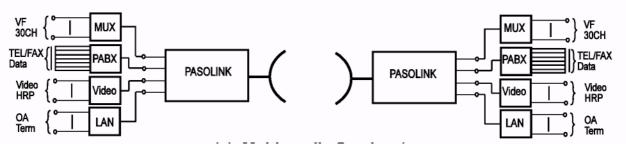
Примечание 4: При использовании системы с двухполяризационной антенной непосредственного монтажа символом \* промаркированы возможные диаметры.



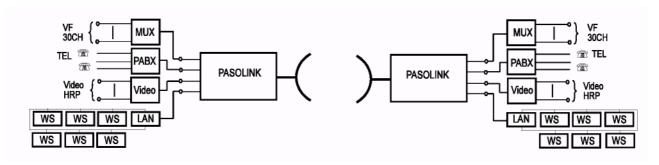

Пустая страница.




#### 8. ПРИМЕНЕНИЯ


## 8.1 Сервисные применения




## (а) Услуга аренды



## (b) Услуга голос/данные



(с) Услуга мультимедиа-1



(d) Услуга мультимедиа -2

Рисунок 23. Сервисные применения

#### 8.2 Специфические применения

#### Круг основных заказчиков

- Операторы сотовой связи
- Транспортные организации общего пользования
- Финансовые институты
- Местные администрации
- Коммунальные услуги
- Аварийные службы
- Транспорт
- Образование
- Портовые организации
- Вещатели

#### Общие применения

- Телефонные услуги
- Передача данных
- Локальные вычислительные сети
- Резервные линии передачи
- Служба работы с покупателями
- Усовершенствованные коммунальные службы
- Управление безопасностью
- Инструкции по релейной трансляции
- Надзор за движением
- Дистанционный мониторинг

#### Специфические применения

- Фиксированные линии связи между мобильными базовыми станциями
- Линии связи «точка-точка» в составных зонах
- Соединение входящих в компанию зданий
- Доступ к местной телефонной станции
- Обеспечение подстанции РВХ в отдельном здании
- Передча данных в компьютерный центр
- Расширение абонентских линий РВХ
- Линии передачи для мест, отделенных водой
- Дистанционный контроль авточтоянок/общественных мест
- Аварийные резервные линии связи между местными администрациями
- Временные линии связи для строящихся объектоа



## NEC